Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catastrophic medieval earthquakes in the Nepal

17.12.2015

Pokhara, the second largest town of Nepal, has been built on massive debris deposits, which are associated with strong medieval earthquakes.

Three medieval earthquakes, in 1100, 1255 and 1344, with magnitudes of around Mw 8 triggered large-scale collapses, mass wasting and initiated the redistribution of material by catastrophic debris flows on the mountain range.


View from the airplane onto the river terraces cut into the massive sediment deposits in Pokhara Nepal. The sediments have been mobilized through several strong earthquakes and transported along the Seti Khola river (backround).

Photo: Christoff Andermann, GFZ

An international team of scientists led by the University of Potsdam has discovered that these flows of gravel, rocks and sand have poured over a distance of more than 60 kilometers from the high mountain peaks of the Annapurna massif downstream.

Christoff Andermann from the GFZ German Research Centre for Geosciences in Potsdam participated in the study, published now in the Science magazine. “We have dated the lake sediments in the dammed tributary valleys using 14C radiocarbon. The measured ages of the sediment depositions coincide with the timing of documented large earthquakes in the region”.

One big boulder, situated on top of the sediment depositions, has raised the interest of the scientists: “The boulder has a diameter of almost ten meters and weighs around 300 tons. At the top of the boulder we measured the concentration of a Beryllium isotope which is produced by cosmogenic radiation.”

This 10Be chemical extraction was carried out in the isotope laboratory at the GFZ in Potsdam and was measured with the accelerator mass spectrometer at the Helmholtz-Zentrum Dresden-Rossendorf, Germany.

The results show that the deposition of the big boulder matches the timing of another large earthquake from 1681. Pokhara lies at the foot of the more than 8000 meters high Annapurna massif; whether the big boulder was transported during the last dated earthquake with the debris, or was just toppled by the strong shaking needs to be further investigated. Nevertheless, the movement of the big boulder can be connected to this strong earthquake.

This research has several important implications reaching beyond fundamental earth sciences. The study provides new insights into the mobilization and volumes of transported material associated with strong earthquakes.

Dating of such sediment bodies provides information about the reoccurrence intervals of earthquakes in the Himalayas, and ultimately demonstrates the role of earthquakes in shaping high mountain landscapes. This knowledge is crucial to better evaluate the risks in tectonically active mountain belts.

Wolfgang Schwanghart, Anne Bernhardt, Amelie Stolle, Philipp Hoelzmann, Basanta R. Adhikari, Christoff Andermann, Stefanie Tofelde, Silke Merchel, Georg Rugel, Monique Fort, Oliver Korup: „Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya“, Science, 16.12.2015, DOI: http://www.sciencemag.org/lookup/doi/10.1126/science.aac9865

Photos in a printable resolution: (all photos: Christoff Andermann, GFZ)
https://media.gfz-potsdam.de/gfz/wv/pm/15/10225_Nepal-Sediment_Christoff-Anderma...
Bhim Kali boulder on top of the sediment deposits near Pokhara in Nepal. The boulder is approx. 10m in diameter and weighs around 300kg. The timing of deposition of this boulder has been dated in this study and coincides with the timing of a large earthquake in 1681 in Nepal.

https://media.gfz-potsdam.de/gfz/wv/pm/15/10224_Nepal-Sediment_Christoff-Anderma...
View from the airplane onto the river terraces cut into the massive sediment deposits in Pokhara Nepal. The sediments have been mobilized through several strong earthquakes and transported along the Seti Khola river (backround).

https://media.gfz-potsdam.de/gfz/wv/pm/15/10229_Nepal-Sediment_Christoff-Anderma...
View from the sediment terraces in Pokhara Valley onto the source area of the sediments in the high Annapurna Massif. Over the last 1000 years, strong earthquakes have mobilized roughly four cubic kilometers of sediments and redistributed them into the lower valleys.

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>