Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon dioxide pools discovered in Aegean Sea

17.07.2015

The location of the second largest volcanic eruption in human history, the waters off Greece's Santorini are the site of newly discovered opalescent pools forming at 250 meters depth. The interconnected series of meandering, iridescent white pools contain high concentrations of carbon dioxide (CO2) and may hold answers to questions related to deepsea carbon storage as well as provide a means of monitoring the volcano for future eruptions.

"The volcanic eruption at Santorini in 1600 B.C. wiped out the Minoan civilization living along the Aegean Sea," said Woods Hole Oceanographic Institution (WHOI) scientist Rich Camilli, lead author of a new study published today in the journal Scientific Reports. "Now these never-before-seen pools in the volcano's crater may help our civilization answer important questions about how carbon dioxide behaves in the ocean."


Video captured an interconnected series of iridescent subsea pools containing high concentrations of carbon dioxide in the Southern Aegean Sea.

Video by Rich Camilli, Woods Hole Oceanographic Institution

Camilli and his colleagues from the University of Girona, National and Kapodistrian University of Athens, Institut de Physique du Globe de Paris, and Hellenic Centre for Marine Research (HCMR), working in the region in July 2012, used a series of sophisticated underwater exploration vehicles to locate and characterize the pools, which they call the Kallisti Limnes, from ancient Greek for "most beautiful lakes."

A prior volcanic crisis in 2011 had led the researchers to initiate their investigation at a site of known hydrothermal activity within the Santorini caldera. During a preliminary reconnaissance of a large seafloor fault the University of Girona's autonomous underwater vehicle (AUV) Girona 500 identified subsea layers of water with unusual chemical properties.

Following the AUV survey, the researchers then deployed HCMR's Thetis human occupied vehicle. The submersible's crew used robotic onboard chemical sensors to track the faint water column chemical signature up along the caldera wall where they discovered the pools within localized depressions of the caldera wall. Finally, the researchers sent a smaller remotely operated vehicle (ROV), to sample the pools' hydrothermal fluids.

"We've seen pools within the ocean before, but they've always been brine pools where dissolved salt released from geologic formations below the seafloor creates the extra density and separates the brine pool from the surrounding seawater," said Camilli. "In this case, the pools' increased density isn't driven by salt - we believe it may be the CO2 itself that makes the water denser and causes it to pool."

Where is this CO2 coming from? The volcanic complex of Santorini is the most active part of the Hellenic Volcanic Arc. The region is characterized by earthquakes caused by the subduction of the African tectonic plate underneath the Eurasian plate. During subduction, CO2 can be released by magma degassing, or from sedimentary materials such as limestone which undergo alteration while being subjected to enormous pressure and temperature.

The researchers determined that the pools have a very low pH, making them quite acidic, and therefore, devoid of calcifying organisms. But, they believe, silica-based organisms could be the source of the opal in the pool fluids.

Until the discovery of these CO2-dense pools, the assumption has been that when CO2 is released into the ocean, it disperses into the surrounding water. "But what we have here," says Camilli, "is like a 'black and tan' - think Guinness and Bass - where the two fluids actually remain separate" with the denser CO2 water sinking to form the pool.

The discovery has implications for the build up of CO2 in other areas with limited circulation, including the nearby Kolumbo underwater volcano, which is completely enclosed. "Our finding suggests the CO2 may collect in the deepest regions of the crater. It would be interesting to see," Camilli said, adding it does have implications for carbon capture and storage.

Sub-seafloor storage is gaining acceptance as a means of reducing heat-trapping CO2 in the atmosphere and lessening the acidifying impacts of CO2 in the ocean. But before fully embracing the concept, society needs to understand the risks involved in the event of release.

Temperature sensors installed by the team revealed that the Kallisti Limnes were 5°C above that of surrounding waters. According to co-author Javier Escartin, "this heat is likely the result of hydrothermal fluid circulation within the crust and above a deeper heat source, such as a magma chamber." These temperatures may provide a useful gauge to study the evolution of the system.

Escartin added that "temperature records of hydrothermal fluids can show variations in heat sources at depth such as melt influx to the magma chamber. The pool fluids also respond to variations in pressure, such as tides, and this informs us of the permeability structure of the sub-seafloor." Changes in the pools' temperature and chemical signals may thus complement other monitoring techniques as useful indicators of increased or decreased volcanism.

This European - American research collaboration was funded through support from the EU Eurofleets program, Institut de Physique du Globe de Paris, Hellenic Centre for Marine Research, the US National Science Foundation, and NASA's astrobiology program (ASTEP) which supports autonomous technology development to search for life on other planets. "From a technology perspective, it was a big step forward," Camilli said.

###

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu

Media Contact

WHOI Media Office
media@whoi.edu
508-289-3340

 @WHOImedia

http://www.whoi.edu 

WHOI Media Office | EurekAlert!

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>