Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

California 2100: More frequent and more severe droughts and floods likely

22.10.2015

El Nino and global warming work together to bring more extreme weather

In the future, the Pacific Ocean's temperature cycles could disrupt more than just December fishing. A study published in Nature Communications suggests that the weather patterns known as El Nino and La Nina could lead to at least a doubling of extreme droughts and floods in California later this century.


On the left, La Nina cools off the ocean surface (greens and blues) in the winter of 1988. On the right, El Nino warms up it up (oranges and reds) in the winter of 1997.

Credit: Jin-Ho Yoon/PNNL

The study shows more frequent extreme events are likely to occur. Other research shows the Golden State's average precipitation increasing gradually, but not enough to account for the occurrence of extreme events. A better understanding of what gives rise to El Nino and La Nina cycles -- together known as El Nino-Southern Oscillation -- might help California predict and prepare for more frequent droughts and floods in the coming century.

"Wet and dry years in California are linked to El Nino and La Nina. That relationship is getting stronger," said atmospheric scientist Jin-Ho Yoon of the Department of Energy's Pacific Northwest National Laboratory. "Our study shows that ENSO will be exhibiting increasing control over California weather."

Rain's range

California is experiencing one of the most severe droughts in its history, but it's not clear if a warmer world will make droughts worse, more frequent or perhaps even improve the situation. After all, warmer air can hold more water, and some research suggests global warming could increase California's average rain and snowfall.

However, research also suggests future rain will come down more as light drizzles and heavy deluges and less as moderate rainfall. Yoon and colleagues from PNNL and Utah State University in Logan, Utah, wondered if droughts might follow a similar pattern.

To find out, the researchers looked at what happens to California in global climate models. They simulated two periods of time: 1920 to 2005 using historical measurements; and 2006 to 2080 using conditions in which very few efforts are made to reduce greenhouse gas emissions. They chose this future scenario to examine the most extreme case.

To understand how well the simulations worked, they used two tactics to show reproducibility: In one tactic, they used a compilation of 38 different models. In the other, they re-ran a single model 30 times. The more similar the results, the more sure the researchers were of the finding.

Weather pendulum

The models showed that in the future, assuming emissions continue to increase, California seasons will exhibit more excessively wet and excessively dry events. These results suggest that the frequency of droughts could double and floods could triple between the early 20th century and late 21st century.

"By 2100, we see more -- and more extreme -- events. Flooding and droughts will be more severe than they are currently," said Yoon.

But why? Yoon suspected the El Nino-Southern Oscillation. Every two to seven years, El Nino comes in and warms up the tropical Pacific Ocean a few degrees, increasing winter rain and snowpack in California. On a similar schedule, La Nina cools things off. Both disrupt regular weather in many regions around the globe.

To explore El Nino's connection to California precipitation, Yoon and colleagues ran a climate model with and without El Nino. In both simulations, they ramped up the concentration of carbon dioxide by 1 percent every year for 150 years. In just one of the runs, they removed El Nino's cyclical contribution by programming the sea surface temperatures to reflect only steady warming.

Without El Nino and La Nina, the frequency of extreme precipitation in California stayed constant for the simulation's century and a half. With ENSO, simulated California experienced wide swings in rainfall by the end of the period.

The results suggest that even though researchers expect rain and snowfall to increase as the climate warms, the manner in which the water hits California could be highly variable.

The El Nino-Southern Oscillation is still a bit of a mystery, said Yoon. Scientists only know El Nino and La Nina years, named for the Spanish terms for boy and girl, are coming by sea surface temperatures and other weather hints. Studies that investigate what controls the unruly children could help scientists predict unruly weather in the future.

###

This work was supported by the Department of Energy Office of Science.

Reference: Jin-Ho Yoon, S.-Y. Simon Wang, Robert R. Gillies, Ben Kravitz, Lawrence Hipps, and Philip J. Rasch. Increasing water cycle extremes in California and relation to ENSO cycle under global warming, Nature Communications, Oct. 21, 2015, DOI: 10.1038/ncomms9657.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

Media Contact

Mary Beckman
mary.beckman@pnnl.gov
509-375-3688

 @PNNLab

http://www.pnnl.gov/news 

Mary Beckman | EurekAlert!

Further reports about: floods global warming sea surface sea surface temperatures

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>