Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in continuous monitoring of CO2 leaks from storage sites could assist CCS

25.01.2016

Kyushu University-led research group develops innovative method for continuous monitoring of CO2 leaks from underground storage sites

Carbon capture and storage projects rely on effective monitoring of injected CO2. However, the high number of necessary surveys makes this a costly endeavor.


Analyzing seismic waves generated by an Accurately Controlled Routinely Operated Signal System (ACROSS) unit can reveal information about the amount and location of CO2 leakage from an underground store.

Credit: International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University

A team of Japanese researchers may have found a means of achieving easier and lower-cost monitoring for leaks of CO2 stored in underground reservoirs.

A recently published article from a team led by researchers at Kyushu University's International Institute for Carbon-Neutral Energy Research (I2CNER) shows how underground CO2 storage sites could be continuously monitored for leaks--a breakthrough for monitoring applications.

Underground storage of CO2 produced from fossil fuel burning, rather than releasing it into the atmosphere, could play an important role in suppressing climate change. However, to safeguard those living at the surface and regulate the climate, ensuring that the CO2 does not leak from the storage site is key.

Current monitoring methods are costly and only carried out periodically, but by using techniques more often used to study earthquakes and volcanic eruptions, the team used analysis of seismic waves to show it is possible to detect movement of subterranean fluids and to identify leaks before they reach the surface.

"One of the main issues" lead author Tatsunori Ikeda says, "was that we had to be sure we could distinguish between seismic wave signals from a CO2 leak and noise from other near-surface disturbances."

Drawing on previous work across multiple disciplines, the method was developed and rigorously analyzed using computer simulations, before being field-tested near a busy road in central Japan's Tokai region. "We used an ACROSS unit and a series of geophones to test the method," coauthor Takeshi Tsuji says.

Given the success of the experiment, "a real opportunity for application of this work is that microseismic monitoring arrays typically installed at storage sites could provide the data needed to identify any leakages and decrease the need for more costly 4D seismic studies that are the industry norm."

Additional testing to refine the method and further improve its accuracy is one branch of work being carried out as part of I2CNER's interdisciplinary efforts to advance the development of carbon capture and storage and boost efforts for achieving a carbon-neutral society.

Media Contact

Yumiko Masumoto, Ruri Hirashima, Aya Mako
wpisyogai@jimu.kyushu-u.ac.jp
81-928-026-935

http://i2cner.kyushu-u.ac.jp/en/ 

Yumiko Masumoto, Ruri Hirashima, Aya Mako | EurekAlert!

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>