Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomass turnover time in ecosystems is halved by land use

23.08.2016

In order to improve our understanding of climate change and to increase the predictability of future dynamics, it is necessary to gain a better understanding of the global carbon cycle. To date, little is known about the average time carbon is stored in biomass, before it passes back into atmosphere or soils (biomass turnover time), and the factors influencing this key parameter also remain largely unknown. Now, a new publication in Nature Geoscience shows that biomass turnover time in vegetation is halved as a result of human influence.

“One of the greatest uncertainties pertaining to our current understanding of climate change relates to the biomass turnover time, a key ecosystem parameter which determines the amount of carbon withdrawn from the atmosphere and is thus critical for climate change“, Karl-Heinz Erb (Institute of Social Ecology) explains. He and his colleagues are the first to calculate the human impact on the global biomass turnover time. This involved calculating the change in carbon turnover time by comparing the actual vegetation with a hypothetical vegetation state which hypothetically excludes any form of land use.


Traktor für Kohlenstoffumsatz

Dusan-Kostic-Fotolia

Quelle: Alpen-Adria-Universität Klagenfurt

The results, which are presented in the current issue of Nature Geoscience, reveal that biomass turnover time is halved by land use. Erb further explains: “This acceleration affects all biomes more or less equally, though with significant differences between land-use types such as forestry or agriculture.

The conversion of forests to croplands results in massive acceleration effects, while the use of forests and natural grasslands is also significant, albeit at a considerably lower level per unit of area. However, from a global perspective, these land-use types affect large areas and thus their contributions is also significant.

While conversion of forests to croplands and pastures is responsible for 59 per cent of the acceleration, forestry contributes 26 per cent, and the use of natural grasslands for 15 per cent in total. This finding is noteworthy, because in most studies the effects of forestry and grazing are neglected and robust and adequate data sets are especially scant in this area.

Our study demonstrates that enhanced knowledge about the various forms of land use, including these more subtle ones, will be central to increasing the predictive capabilities with regard to carbon dynamics and future developments of climate change, for instance.”

Responding to the question about the potential implications of this acceleration for humanity, Erb specifies: “What we do know today, is that it affects climate change; what we don’t know yet, is to which extent it does so.”

But as the demand for biomass is growing very rapidly at the moment, this could lead to a further acceleration of the carbon cycle. This could affect the sink function of ecosystems, in other words, their capacity to withdraw carbon from the atmosphere and store it in long-living pools, a central naturel process slowing climate change, would gradually dwindle away. The results clearly illustrate that using biomass as a resource is not climate change neutral.

Erb, K.-H., Fetzel, T., Plutzar, C., Kastner, T., Lauk, C., Mayer, A., Niedertscheider, M., Körner, C., Haberl, H., 2016. Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geoscience, doi:10.1038/ngeo2782.

Weitere Informationen:

http://www.aau.at

Dr. Romy Müller | idw - Informationsdienst Wissenschaft

Further reports about: Atmosphere Geoscience biomass carbon cycle croplands ecosystems land use natural grasslands

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>