Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Better water management could halve the global food gap


Improved agricultural water management could halve the global food gap by 2050 and buffer some of the harmful climate change effects on crop yields. For the first time, scientists investigated systematically the worldwide potential to produce more food with the same amount of water by optimizing rain use and irrigation. They found the potential has previously been underestimated. Investing in crop water management could substantially reduce hunger while at the same time making up for population growth. However, putting the findings into practice would require specific local solutions, which remains a challenge.

“Smart water use can boost agricultural production – we’ve in fact been surprised to see such sizeable effects at the global level,” says lead-author Jonas Jägermeyr from the Potsdam Institute for Climate Impact Research. In a water management scenario the scientists call ambitious, global kilocalorie production could rise by 40 percent, while according to UN estimates roughly 80 percent would be needed to eradicate hunger by the middle of this century.

Drip irrigation. Photo: thinkstock

But even in less ambitious scenarios, results show that integrated crop water management could make a crucial contribution to filling the plates of the poor, says Jägermeyr. “It turns out that crop water management is a largely underrated approach to reduce undernourishment and increase climate resilience of smallholders.”

+++Large yield increase potential in China, Mexico, Australia+++

The scientists have run comprehensive biophysical computer simulations, constraining these in such a way that croplands do not expand into forests and no additional water resources are needed. As it is a global study, it provides detailed vegetation dynamics and water use effects in river basins – certainly too coarse to simulate farm-level conditions but suited to identify regional hotspots.

For example, the yield increase potential of crop water management is found to be particularly large in water-scarce regions such as in China, Australia, the western US, Mexico, and South Africa.

“Assessing the potential is tricky: If upstream farmers reroute otherwise wasted water to increase irrigation and production, less water returns to downstream users and consequently this can affect their production,” says co-author and team leader Dieter Gerten. “Below the line, we found that the overall production increases. Still, this of course poses quite some distributional challenges. Also, a lot of local government regulation and incentives such as-micro credit schemes are needed to put crop water management into large-scale practice.”

+++Mulching and drip systems to counter climate change impacts+++

The scientists took into account a number of very different concrete water management options, from low-tech solutions for smallholders to the industrial scale. Water harvesting by collecting excess rain run-off for instance in cisterns – for supplementary irrigation during dry spells – is a common traditional approach in some regions such as the Sahel region in Africa, but is under-used in many other semi-arid regions such as Asia and North America. Mulching is another option – the soil gets covered either simply with crop residues left on the field, reducing evaporation, or with huge plastic sheets. Finally, a major contribution to the global potential is upgrading irrigation to drip systems.

It is especially under ongoing climate change that water management becomes increasingly important to reduce food risks. The reason is that global warming is likely to increase droughts and change rainfall patterns, so water availability becomes even more critical than before. Assuming a moderate CO2 fertilization effect – plants take up CO2 and could hence benefit from higher concentrations in the air, but the magnitude of this effect is still under debate –, the study shows that in most climate policy scenarios water management can counterbalance a large part of the regional warming impacts on farming. Yet if greenhouse-gas emissions from burning fossil fuels are not reduced at all, in a business-as-usual scenario, water management will clearly not suffice to outweigh the negative climate effects.

+++Given the planetary boundaries, decision-makers should look into water use+++

”Water management is key for tackling the greater sustainability challenge,” says Wolfgang Lucht, co-author of the study and co-chair of PIK’s research domain Earth System Analysis. “It has been an issue in many local and regional studies and its effects on farm level have been well demonstrated, but on the global level it has been somewhat neglected. The renewed Sustainable Development Goals – while stipulating sustainable agriculture among all nations – need to be based on more evidence on how to achieve it; they do not focus on water use very much. Since we’re rapidly approaching planetary boundaries, our study should indeed draw the attention of decision-makers of all levels to the potential of integrated crop water management.”

Article: Jaegermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., Rockström, J. (2016): Integrated crop water management might sustainably halve the global food gap. Environmental Research Letters 11, 025002 [doi: 10.1088/1748-9326/11/2/025002]

Weblink to the article once it is published:

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>