Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Berkeley Lab scientists ID new driver behind Arctic warming


Scientists have identified a mechanism that could turn out to be a big contributor to warming in the Arctic region and melting sea ice.

The research was led by scientists from the US Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). They studied a long-wavelength region of the electromagnetic spectrum called far infrared. It's invisible to our eyes but accounts for about half the energy emitted by the Earth's surface. This process balances out incoming solar energy.

Despite its importance in the planet's energy budget, it's difficult to measure a surface's effectiveness in emitting far-infrared energy. In addition, its influence on the planet's climate is not well represented in climate models. The models assume that all surfaces are 100 percent efficient in emitting far-infrared energy.

That's not the case. The scientists found that open oceans are much less efficient than sea ice when it comes to emitting in the far-infrared region of the spectrum. This means that the Arctic Ocean traps much of the energy in far-infrared radiation, a previously unknown phenomenon that is likely contributing to the warming of the polar climate.

Their research appears this week in the online early edition of the Proceedings of the National Academy of Sciences.

"Far-infrared surface emissivity is an unexplored topic, but it deserves more attention. Our research found that non-frozen surfaces are poor emitters compared to frozen surfaces. And this discrepancy has a much bigger impact on the polar climate than today's models indicate," says Daniel Feldman, a scientist in Berkeley Lab's Earth Sciences Division and lead author of the paper.

"Based on our findings, we recommend that more efforts be made to measure far-infrared surface emissivity. These measurements will help climate models better simulate the effects of this phenomenon on the Earth's climate," Feldman says.

He conducted the research with Bill Collins, who is head of the Earth Sciences Division's Climate Sciences Department. Scientists from the University of Colorado, Boulder and the University of Michigan also contributed to the research.

The far-infrared region of the electromagnetic spectrum spans wavelengths that are between 15 and 100 microns (a micron is one-millionth of a meter). It's a subset of infrared radiation, which spans wavelengths between 5 and 100 microns. In comparison, visible light, which is another form of electromagnetic radiation, has a much shorter wavelength of between 390 and 700 nanometers (a nanometer is one billionth of a meter).

Many of today's spectrometers cannot detect far-infrared wavelengths, which explains the dearth of field measurements. Because of this, scientists have extrapolated the effects of far-infrared surface emissions based on what's known at the wavelengths measured by today's spectrometers.

Feldman and colleagues suspected this approach is overly simplistic, so they refined the numbers by reviewing published studies of far-infrared surface properties. They used this information to develop calculations that were run on a global atmosphere climate model called the Community Earth System Model, which is closely tied to the Department of Energy's Accelerated Climate Model for Energy (ACME).

The simulations revealed that far-infrared surface emissions have the biggest impact on the climates of arid high-latitude and high-altitude regions.

In the Arctic, the simulations found that open oceans hold more far-infrared energy than sea ice, resulting in warmer oceans, melting sea ice, and a 2-degree Celsius increase in the polar climate after only a 25-year run.

This could help explain why polar warming is most pronounced during the three-month winter when there is no sun. It also complements a process in which darker oceans absorb more solar energy than sea ice.

"The Earth continues to emit energy in the far infrared during the polar winter," Feldman says. "And because ocean surfaces trap this energy, the system is warmer throughout the year as opposed to only when the sun is out."

The simulations revealed a similar warming affect on the Tibetan plateau, where there was five percent less snowpack after a 25-year run. This means more non-frozen surface area to trap far-infrared energy, which further contributes to warming in the region.

"We found that in very arid areas, the extent to which the surface emits far-infrared energy really matters. It controls the thermal energy budget for the entire region, so we need to measure and model it better," says Feldman

The research was supported by NASA and the Department of Energy's Office of Science.

Dan Krotz | EurekAlert!
Further information:

Further reports about: Arctic Arctic warming Laboratory climate models measure oceans sea ice spectrum surfaces wavelengths

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>