Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much does groundwater contribute to sea level rise?

03.05.2016

Land water, including groundwater extraction, contributes far less to sea level rise than previously thought, according to a new study.

Groundwater extraction and other land water contribute about three times less to sea level rise than previous estimates, according to a new study published in the journal Nature Climate Change. The study does not change the overall picture of future sea level rise, but provides a much more accurate understanding of the interactions between water on land, in the atmosphere, and the oceans, which could help to improve future models of sea level rise.


© haveseen | Adobe Stock Photo

Quelle: IIASA

“Projecting accurate sea level rise is important, because rising sea level is a threat to people who live near the ocean and in small islands,” explains IIASA researcher Yoshihide Wada, who led the study. “Some low-lying areas will have more frequent flooding, and very low-lying land could be submerged completely. This could also damage substantially coastal infrastructure.”

Sea level has risen 1.7 mm per year over the 20th and the early 21st century, a trend that is expected to continue as climate change further warms the planet. Researchers have attributed the rising seas to a combination of factors including melting ice caps and glaciers, thermal expansion (water expands as it gets warmer), and the extraction of groundwater for human use.

Land water contributions are small in comparison to the contribution of ice melt and thermal expansion, yet they have been increasing, leading to concerns that this could exacerbate the problem of sea level rise caused by climate change.

However, much uncertainty remains about how much different sources contribute to sea level rise. In fact, sea level has actually risen more than researchers could account for from the known sources, leading to a gap between observed and modeled global sea-level budget.

Previous studies, including estimates used in the IPCC Fifth Assessment Report, had assumed that nearly 100% of extracted groundwater ended up in the ocean. The new study improves on previous estimates by accounting for feedbacks between the land, ocean, and atmosphere. It finds that number is closer to 80%. That means that the gap between modeled and observed sea level rise is even wider, suggesting that other processes are contributing more water than previously estimated.

“During the 20th century and early 21st century, cumulative groundwater contribution to global sea level was overestimated by at least 10 mm,” says Wada. In fact, the new study shows that from 1971 to 2010, the contribution of land water to global sea level rise was actually slightly negative – meaning that more water was stored in groundwater and also due to reservoir impoundment behind dams. From 1993 to 2010, the study estimates terrestrial water as contributing positive 0.12 mm per year to sea level rise.

The study does not change the fact that future groundwater contribution to sea level will increase as groundwater extraction increases. And the increasing trend in groundwater depletion has impacts beyond sea level rise. Wada explains, “The water stored in the ground can be compared to money in the bank. If you withdraw money at a faster rate than you deposit it, you will eventually start having account-supply problems. If we use groundwater unsustainably, in the future there might not be enough groundwater to use for food production. Groundwater depletion can also cause severe environmental problems like reduction of water in streams and lakes, deterioration of water quality, increased pumping costs, and land subsidence.”

Reference
Wada Y, Lo MH, Yeh PJF, Reager JT, Famiglietti JS, Wu RJ, Tseng YH (2016). Fate of water pumped from underground and contributions to sea-level rise. Nature Climate Change. doi:10.1038/NCLIMATE3001

About IIASA:
The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, Europe, and Oceania. www.iiasa.ac.at 

Katherine Leitzell | idw - Informationsdienst Wissenschaft
Further information:
http://www.iiasa.ac.at/web/home/about/news/160502-sealevel.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>