Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baltic Sea: Climate Change counteracts decline in eutrophication

01.12.2014

GEOMAR scientists publish the first comprehensive analysis of the time series station Boknis Eck

Despite extensive measures to protect the Baltic Sea from anthropogenic activities since the late 1980s, oxygen concentrations continue to decrease. Rising temperatures in the bottom water layers could be the reason for the oxygen decline. This paper reports on the first comprehensive analysis of measurement data from the Boknis Eck time series station, and it was recently published in the international journal Biogeosciences.


View from the research cutter LITTORINA on the waters at the outlet of Eckernförde bay. This is where the time series station Boknis Eck is located. Photo: J. Steffen, GEOMAR

Off the coast of Schleswig-Holstein at the exit of Eckernförde Bay is a hidden treasure, but it is not one of chests full of silver and gold. It is a unique scientific record. Since 1957, environmental parameters such as oxygen concentrations, temperature, salinity and nutrients have been measured monthly at the Boknis Eck time series station.

"It is one of the oldest active time series stations for this kind of data worldwide," explains the scientific coordinator Prof. Dr. Hermann Bange from GEOMAR Helmholtz Centre for Ocean Research Kiel. To date, however, the long time-series has only been partially evaluated. Bange and his team have now, for the first time, analyzed chemical, biological and physical data for the entire period since 1957.

Their results have shown that measures to protect the Baltic Sea have been somewhat effective, however, general climate change has, to some degree, buffered against these measures. The study has now been published in the international journal Biogeosciences.

A natural phenomenon of the Baltic Sea is the lack of oxygen in the deeper water layers. The stratification of the Baltic Sea water is quite stable, with fresh saline and oxygen-rich water only reaching its inner regions from the North Sea through the Danish islands. "We see this also in Boknis Eck, from about 20 meters depth," explains Sinikka Lennartz, M.Sc., from GEOMAR and lead author of the new study.

In the second half of the 20th century this natural phenomenon was augmented because countries bordering the Baltic Sea dumped large amounts of agricultural fertilizers and sewage into the sea. "That meant an oversupply of nutrients. Algae were then able to proliferate, and as soon as they die and sink to the bottom, microorganisms decompose the biomass and consume a lot of oxygen; this resulted in large oxygen-free zones at the bottom of the Baltic Sea to be formed " explains Lennartz.

In the mid-1980s, the Baltic countries agreed to improve the protection of the sea. An increasing number of sewage treatment plants were built and the use of fertilizers in agriculture declined. "This trend we can clearly demonstrate in Boknis Eck. Since the late 80s, the concentration of nutrients has decreased," says Professor Bange. The hope that this would restore more oxygen in the lower layers of water, however, has not been realized. "The oxygen trend is still down significantly," explains Lennartz, "we see more and more events at Boknis Eck when no oxygen is measured below 20 meters depth."

One possible explanation the researchers found for the continued decline of oxygen concentrations is related to changes in water temperature. "In late summers the temperature on the seafloor has risen by an average of 0.4 degrees per decade. Higher temperatures also mean a more efficient degradation of biomass and therefore more consumption of oxygen," says Professor Bange. Thus, the data suggests that rising seawater temperature caused by climate change has buffered against measures for the protection of the Baltic Sea.

"Nevertheless, the bordering countries should not subside in their efforts to protect the environment. With increasing temperatures, the Baltic Sea would become eutrophic a lot faster if we reintroduced more waste," says marine chemist Bange.

At the same time, the study demonstrates the high value of long time-series measurements such as those at Boknis Eck. "In order to identify long-term trends in the environment and distinguish anthropogenic changes of natural fluctuations, short-term measurement campaigns are not sufficient. Therefore, we really have a treasure with the Boknis Eck data that is also irreplaceable for global comparisons," says Bange.

Reference:
Lennartz, S. T., A. Lehmann, J. Herrford, F. Malien, H.-P. Hansen, H. Biester, H. W. Bange (2014): Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957–2013: does climate change counteract the decline in eutrophication? Biogeosciences, 11, 6323-6339, 2014, http://www.biogeosciences.net/11/6323/2014/bg-11-6323-2014.html

Contact:
Sinikka Lennartz, M.Sc. (GEOMAR, FB2 - Chemical Oceanography) slennartz(at)geomar.de
Prof. Dr. Hermann Bange (FB2 - Chemical Oceanography) hbange(at)geomar.de
Jan Steffen (GEOMAR, Communications & Media), Tel .: +49 (0) 431 600-2811, jsteffen(at)geomar.de

Related News:International Ocean Sampling Day in Kiel Files:pm_2014_72_BoknisEck-Biogeosciences_en.pdf  51 K 

Links: www.bokniseck.de The time series station Boknis Eck

Jan Steffen | EurekAlert!

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>