Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Babe Ruth and earthquake hazard maps

30.10.2015

Northwestern University researchers have turned to an unusual source -- Major League Baseball -- to help learn why maps used to predict shaking in future earthquakes often do poorly.

Earthquake hazard maps use assumptions about where, when, and how big future earthquakes will be to predict the level of shaking. The results are used in designing earthquake-resistant buildings.


Here is a comparison of Japanese national earthquake hazard map (top) to uniform and randomized versions. The map predicts the level of shaking, shown by colors from red (highest) to white (least) expected to be exceeded at 5% of the sites on the map in the next 50 years. Surprisingly, by the most commonly used measure, the uniform and randomized maps work better than the published maps.

Image courtesy of Seth Stein, Northwestern University.

However, as the study's lead author, earth science and statistics graduate student Edward Brooks, explains "sometimes the maps do well, and sometimes they do poorly. In particular, the shaking and thus damage in some recent large earthquakes was much larger than expected."

Part of the problem is that seismologists have not developed ways to describe how well these maps perform. As Seth Stein, William Deering Professor of Geological Sciences explains "we need the kind of information the weather service has, where they can tell you how much confidence to have in their forecasts."

The question is how to measure performance. Bruce Spencer, professor of statistics, explains that "it's like asking how good a baseball player Babe Ruth was. The answer depends on how one measures performance. In many seasons Ruth led the league in both home runs and in the number of times he struck out. By one measure he did very well, and by another, very poorly. In the same way, we are using several measures to describe how hazard maps perform."

Another problem is that the hazard maps try to forecast shaking over hundreds over years, because buildings have long lifetimes. As a result, it takes a long time to tell how well a map is working. To get around this, the team looked backwards in time, using records of earthquake shaking in Japan that go back 500 years.

They compared the shaking to the forecasts of the published hazard maps. They also compared the shaking to maps in which the expected shaking was the same everywhere in Japan, and maps in which the expected shaking at places was assigned at random from the published maps.

The results were surprising. In Brook's words "it turns out that by the most commonly used measure using the uniform and randomized maps work better than the published maps. By another measure, the published maps work better."

The message, in Stein's view, is that seismologists need to know a lot more about how these maps work. "Some of the problem is likely to be that how earthquakes occur in space and time is more complicated that the maps assume. Until we get a better handle on this, people using earthquake hazard maps should recognize that they have large uncertainties. Brightly colored maps look good, but the earth doesn't have to obey them and sometimes won't."

###

This research will be presented at the 2015 Annual Meeting of the Geological Society of America in Baltimore, MD, as part of the Bridging Two Continents joint "meeting-within-a meeting" with the Geological Society of China.

CONTACTS:

Edward Brooks, eddie@earth.northwestern.edu, 215-630-5436
Seth Stein, s-stein@northwestern.edu, 847-308-3806

WHAT:

Session 6
Active Intracontinental Tectonics in Asia and North America and the Associated Geohazards
session link: https://gsa.confex.com/gsa/2015AM/webprogram/Session38003.html

Paper 6-12, Using Historical Intensity Data To Assess Long-Term Performance of Earthquake Hazard Maps
Abstract link: https://gsa.confex.com/gsa/2015AM/webprogram/Paper262579.html

WHERE & WHEN:

Sunday, 1 November 2015: 8:00 AM-12:00 PM
Room 349/350 (Baltimore Convention Center)
Presentation Time: 11:20 AM

The Geological Society of America, founded in 1888, serves more than 27,000 members from academia, government, and industry in more than 100 countries. Through its meetings, publications, and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind. GSA encourages cooperative research among earth, life, planetary, and social scientists, fosters public dialogue on geoscience issues, and supports all levels of earth science education.

Figure caption: Comparison of Japanese national earthquake hazard map (top) to uniform and randomized versions. The map predicts the level of shaking, shown by colors from red (highest) to white (least) expected to be exceeded at 5% of the sites on the map in the next 50 years. Surprisingly, by the most commonly used measure, the uniform and randomized maps work better than the published maps. Image courtesy of Seth Stein, Northwestern University.

Media Contact

Christa Stratton
cstratton@geosociety.org
303-357-1093

 @geosociety

http://www.geosociety.org 

Christa Stratton | EurekAlert!

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>