Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autumn gales again drive salt into the Baltic: Third Major Baltic Inflow within 1.5 years.

25.11.2015

From November 14 – 22, huge amounts of North Sea waters rich in oxygen entered the Baltic Sea again. It was a series of 12 storm fronts passing the Baltic Sea region since the beginning of November, which had triggered this event. According to first calculations a water volume of 76 km³ with a salt content of 17-22 g/kg passed the narrow and shallow Western Baltic Sea during the main inflow period. This sums up to approximately 1.4 giga-tons of salt being transported into the Baltic. Such an event can be classified as a Major Baltic Inflow of moderate intensity. Currently, this water mass can be traced in a water depth of 45-25 m in the Arkona Basin.

According to first calculations a water volume of 76 km³ with a salt content of 17-22 g/kg passed the narrow and shallow Western Baltic Sea during the main inflow period. This sums up to approximately 1.4 giga-tons of salt being transported into the Baltic. Such an event can be classified as a Major Baltic Inflow of moderate intensity. Currently, this water mass can be traced in a water depth of 45-25 m in the Arkona Basin.

After the event of the century in December 2014, which transported in total nearly 4 giga-tons of salt and caused, together with three minor inflow pulses in early 2014, for the first time since 2003 a ventilation of the deep water in the central Baltic, this is the third inflow in a row. During the eleven years since 2003 stagnating conditions in the deep water of the central Baltic have led to oxygen depletion and the formation of toxic hydrogen sulfide.

Again, the automatic measurements at the MARNET station Darss Sill, which the IOW is conducting on behalf of the Federal Maritime and Hydrographic Agency, decisively supported the early recognition of this inflow. Dr. Michael Naumann, responsible for hydrophysical observations at the IOW had a sharp eye on the development “We recognized the special meteorology and the changes in the sea water level. Together with the MARNET data, we were perfectly prepared for immediate impact assessments. “ The effects of this anew inflow on the ecosystem of the Baltic Sea will be subject of further investigations.

Contact:
Dr. Michael Naumann, Department Physical Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, phone: +49 381 5197 267
Dr. Günther Nausch, Department Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, phone: +49 381 5197 332
Dr. Barbara Hentzsch, public relation officer, Leibniz Institute for Baltic Sea Research Warnemünde, phone: +49 381 5197 102

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros.

www.leibniz-association.eu

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.io-warnemuende.de

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>