Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autumn gales again drive salt into the Baltic: Third Major Baltic Inflow within 1.5 years.

25.11.2015

From November 14 – 22, huge amounts of North Sea waters rich in oxygen entered the Baltic Sea again. It was a series of 12 storm fronts passing the Baltic Sea region since the beginning of November, which had triggered this event. According to first calculations a water volume of 76 km³ with a salt content of 17-22 g/kg passed the narrow and shallow Western Baltic Sea during the main inflow period. This sums up to approximately 1.4 giga-tons of salt being transported into the Baltic. Such an event can be classified as a Major Baltic Inflow of moderate intensity. Currently, this water mass can be traced in a water depth of 45-25 m in the Arkona Basin.

According to first calculations a water volume of 76 km³ with a salt content of 17-22 g/kg passed the narrow and shallow Western Baltic Sea during the main inflow period. This sums up to approximately 1.4 giga-tons of salt being transported into the Baltic. Such an event can be classified as a Major Baltic Inflow of moderate intensity. Currently, this water mass can be traced in a water depth of 45-25 m in the Arkona Basin.

After the event of the century in December 2014, which transported in total nearly 4 giga-tons of salt and caused, together with three minor inflow pulses in early 2014, for the first time since 2003 a ventilation of the deep water in the central Baltic, this is the third inflow in a row. During the eleven years since 2003 stagnating conditions in the deep water of the central Baltic have led to oxygen depletion and the formation of toxic hydrogen sulfide.

Again, the automatic measurements at the MARNET station Darss Sill, which the IOW is conducting on behalf of the Federal Maritime and Hydrographic Agency, decisively supported the early recognition of this inflow. Dr. Michael Naumann, responsible for hydrophysical observations at the IOW had a sharp eye on the development “We recognized the special meteorology and the changes in the sea water level. Together with the MARNET data, we were perfectly prepared for immediate impact assessments. “ The effects of this anew inflow on the ecosystem of the Baltic Sea will be subject of further investigations.

Contact:
Dr. Michael Naumann, Department Physical Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, phone: +49 381 5197 267
Dr. Günther Nausch, Department Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, phone: +49 381 5197 332
Dr. Barbara Hentzsch, public relation officer, Leibniz Institute for Baltic Sea Research Warnemünde, phone: +49 381 5197 102

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros.

www.leibniz-association.eu

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.io-warnemuende.de

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>