Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU-led scientists discover why rocks flow slowly in Earth's middle mantle

06.06.2017

For decades, researchers have studied the interior of the Earth using seismic waves from earthquakes. Now a recent study, led by Arizona State University's School of Earth and Space Exploration Associate Professor Dan Shim, has re-created in the laboratory the conditions found deep in the Earth, and used this to discover an important property of the dominant mineral in Earth's mantle, a region lying far below our feet.

Shim and his research team combined X-ray techniques in the synchrotron radiation facility at the U.S. Department of Energy's National Labs and atomic resolution electron microscopy at ASU to determine what causes unusual flow patterns in rocks that lie 600 miles and more deep within the Earth. Their results have been published in the Proceedings of the National Academy of Sciences.


As slabs of Earth's crust decend into the mantle, they encounter a zone about 1,100 kilometers down where the mantle rock abruptly becomes stiffer, flowing less easily. Similarly, rising plumes of molten rock encounter the same layer and have difficulty punching through from below.

Credit: Dan Shim

Slow flow, down deep

Planet Earth is built of layers. These include the crust at the surface, the mantle and the core. Heat from the core drives a slow churning motion of the mantle's solid silicate rocks, like slow-boiling fudge on a stove burner. This conveyor-belt motion causes the crust's tectonic plates at the surface to jostle against each other, a process that has continued for at least half of Earth's 4.5 billion-year history.

Shim's team focused on a puzzling part of this cycle: Why does the churning pattern abruptly slow at depths of about 600 to 900 miles below the surface?

"Recent geophysical studies have suggested that the pattern changes because the mantle rocks flow less easily at that depth," Shim said. "But why? Does the rock composition change there? Or do rocks suddenly become more viscous at that depth and pressure? No one knows."

To investigate the question in the lab, Shim's team studied bridgmanite, an iron-containing mineral that previous work has shown is the dominant component in the mantle.

"We discovered that changes occur in bridgmanite at the pressures expected for 1,000 to 1,500 km depths," Shim said. "These changes can cause an increase in bridgmanite's viscosity -- its resistance to flow."

The team synthesized samples of bridgmanite in the laboratory and subjected them to the high-pressure conditions found at different depths in the mantle.

Mineral key to the mantle

The experiments showed the team that, above a depth of 1,000 kilometers and below a depth of 1,700 km, bridgmanite contains nearly equal amounts of oxidized and reduced forms of iron. But at pressures found between those two depths, bridgmanite undergoes chemical changes that end up significantly lowering the concentration of iron it contains.

The process starts with driving oxidized iron out of the bridgmanite. The oxidized iron then consumes the small amounts of metallic iron that are scattered through the mantle like poppy seeds in a cake. This reaction removes the metallic iron and results in making more reduced iron in the critical layer.

Where does the reduced iron go? The answer, said Shim's team, is that it goes into another mineral present in the mantle, ferropericlase, which is chemically prone to absorbing reduced iron.

"Thus the bridgmanite in the deep layer ends up with less iron," explained Shim, noting that this is the key to why this layer behaves the way it does.

"As it loses iron, bridgmanite becomes more viscous," Shim said. "This can explain the seismic observations of slowed mantle flow at that depth."

###

Other members of the Shim team include Brent Grocholski (Smithsonian Institution), Yu Ye (former ASU post-doctoral student now at the University of Geosciences in Wuhan, China), Ercan Alp (Argonne National Laboratory), Shenzhen Xu and Dane Morgan (University of Wisconsin), Yue Meng (Carnegie Institution of Washington) and Vitali Prakapenka (University of Chicago). About half of the high-pressure samples were analyzed using the electron microscopes at John M. Cowley Center for High Resolution Electron Microscopy at ASU.

Media Contact

Robert Burnham
robert.burnham@asu.edu
480-458-8207

 @ASU

http://asunews.asu.edu/ 

Robert Burnham | EurekAlert!

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>