Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ascension of marine diatoms linked to vast increase in continental weathering

24.03.2015

A team of researchers, including Rensselaer professor Morgan Schaller, has used mathematical modeling to show that continental erosion over the last 40 million years has contributed to the success of diatoms, a group of tiny marine algae that plays a key role in the global carbon cycle. The research was published today in the Proceedings of the National Academy of Sciences.

Diatoms consume 70 million tons of carbon from the world's oceans daily, producing organic matter, a portion of which sinks and is buried in deep ocean sediments. Diatoms account for over half of organic carbon burial in marine sediments. In a mechanism known as a the "oceanic biological pump," the diatoms absorb and bury carbon, then atmospheric carbon dioxide diffuses into the upper ocean to compensate for that loss of carbon, reducing the concentration of carbon dioxide in the atmosphere.


This image shows the ornamentation of the silica frustule of the chain-forming diatom Skeletonema costatum, a key player in the global carbon cycle .

Credit: J.M. Fortuño

"What we really have here is a double whammy: The chemical breakdown of rocks on land efficiently consumes carbon dioxide from the atmosphere, and those minerals are delivered to the ocean basins by rivers where, in this case, they fueled the massive expansion of diatoms," said Schaller, an assistant professor of earth and environmental sciences.

"Diatoms are photosynthetic, so they also consume atmospheric carbon dioxide. The combination of both of these effects may help explain the drastic decrease in atmospheric carbon dioxide over the last 35 million years that has plunged us into the current condition where we have glacial ice cover at both of the poles."

Diatoms appeared in the Mesozoic about 200 million years ago as descendants of the red algal lineage. However, it was not until the last 40 million years that this group of marine microalgae rose to dominate marine primary productivity.

Unlike other microalgae, diatoms require silicic acid to form tiny cases of amorphous silica (glass) called frustules, which are a means of defense against predators. Therefore, understanding the sources of silicic acid in the ocean is essential to understanding the evolutionary success of diatoms, and this is where the Earth sciences come into play.

Silicate rocks such as granites and basalts comprise the majority of Earth's crust, and their chemical decomposition represents a major source of silicic acid to the world oceans. Continental erosion depends on a complex interaction of physical, chemical, and biological forces that ultimately combine to enhance the dissolution of minerals that make up the rocks. The elevation of mountain ranges such as the Himalayas over the last 40 million years favored the fracture and dissolution of continental silicate rocks facilitating the expansion of diatoms in marine ecosystems.

Previous work has associated the evolutionary expansion of diatoms with a superior competitive ability for silicic acid relative to other plankton that use silica, such as radiolarians, which evolved by reducing the weight of their silica skeleton.

But in their work, the researchers used a mathematical model in which diatoms and radiolarians compete for silicic acid to show that the observed reduction in the weight of radiolarian tests is insufficient to explain the rise of diatoms. Using the lithium isotope record of seawater as a proxy of silicate rock weathering and erosion, they calculated changes in the input flux of silicic acid to the oceans. Their results indicate that the long-term massive erosion of continental silicates was critical to the subsequent success of diatoms in marine ecosystems over the last 40 million years and suggest an increase in the strength and efficiency of the oceanic biological pump over this period.

###

The research team was led by Pedro Cermeño, and included Sergio M. Vallina, both of the Instituto de Ciencias del Mar in Spain, as well as Schaller, Paul G. Falkowski of Rutgers University, and Òscar E. Romero, of the University of Bremen in Germany.

Media Contact

Mary Martialay
martim12@rpi.edu

 @rpinews

http://news.rpi.edu/ 

Mary Martialay | EurekAlert!

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>