Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ascension of marine diatoms linked to vast increase in continental weathering

24.03.2015

A team of researchers, including Rensselaer professor Morgan Schaller, has used mathematical modeling to show that continental erosion over the last 40 million years has contributed to the success of diatoms, a group of tiny marine algae that plays a key role in the global carbon cycle. The research was published today in the Proceedings of the National Academy of Sciences.

Diatoms consume 70 million tons of carbon from the world's oceans daily, producing organic matter, a portion of which sinks and is buried in deep ocean sediments. Diatoms account for over half of organic carbon burial in marine sediments. In a mechanism known as a the "oceanic biological pump," the diatoms absorb and bury carbon, then atmospheric carbon dioxide diffuses into the upper ocean to compensate for that loss of carbon, reducing the concentration of carbon dioxide in the atmosphere.


This image shows the ornamentation of the silica frustule of the chain-forming diatom Skeletonema costatum, a key player in the global carbon cycle .

Credit: J.M. Fortuño

"What we really have here is a double whammy: The chemical breakdown of rocks on land efficiently consumes carbon dioxide from the atmosphere, and those minerals are delivered to the ocean basins by rivers where, in this case, they fueled the massive expansion of diatoms," said Schaller, an assistant professor of earth and environmental sciences.

"Diatoms are photosynthetic, so they also consume atmospheric carbon dioxide. The combination of both of these effects may help explain the drastic decrease in atmospheric carbon dioxide over the last 35 million years that has plunged us into the current condition where we have glacial ice cover at both of the poles."

Diatoms appeared in the Mesozoic about 200 million years ago as descendants of the red algal lineage. However, it was not until the last 40 million years that this group of marine microalgae rose to dominate marine primary productivity.

Unlike other microalgae, diatoms require silicic acid to form tiny cases of amorphous silica (glass) called frustules, which are a means of defense against predators. Therefore, understanding the sources of silicic acid in the ocean is essential to understanding the evolutionary success of diatoms, and this is where the Earth sciences come into play.

Silicate rocks such as granites and basalts comprise the majority of Earth's crust, and their chemical decomposition represents a major source of silicic acid to the world oceans. Continental erosion depends on a complex interaction of physical, chemical, and biological forces that ultimately combine to enhance the dissolution of minerals that make up the rocks. The elevation of mountain ranges such as the Himalayas over the last 40 million years favored the fracture and dissolution of continental silicate rocks facilitating the expansion of diatoms in marine ecosystems.

Previous work has associated the evolutionary expansion of diatoms with a superior competitive ability for silicic acid relative to other plankton that use silica, such as radiolarians, which evolved by reducing the weight of their silica skeleton.

But in their work, the researchers used a mathematical model in which diatoms and radiolarians compete for silicic acid to show that the observed reduction in the weight of radiolarian tests is insufficient to explain the rise of diatoms. Using the lithium isotope record of seawater as a proxy of silicate rock weathering and erosion, they calculated changes in the input flux of silicic acid to the oceans. Their results indicate that the long-term massive erosion of continental silicates was critical to the subsequent success of diatoms in marine ecosystems over the last 40 million years and suggest an increase in the strength and efficiency of the oceanic biological pump over this period.

###

The research team was led by Pedro Cermeño, and included Sergio M. Vallina, both of the Instituto de Ciencias del Mar in Spain, as well as Schaller, Paul G. Falkowski of Rutgers University, and Òscar E. Romero, of the University of Bremen in Germany.

Media Contact

Mary Martialay
martim12@rpi.edu

 @rpinews

http://news.rpi.edu/ 

Mary Martialay | EurekAlert!

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>