Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Ice Age ended, greenhouse gas rise was lead factor in melting of Earth's glaciers

21.08.2015

New findings have implications for recent carbon dioxide rise and melting glaciers

A fresh look at some old rocks has solved a crucial mystery of the last Ice Age, yielding an important new finding that connects to the global retreat of glaciers caused by climate change today, according to a new study by a team of climate scientists.


Improved dating methods reveal that the rise in carbon dioxide levels was the primary cause of the simultaneous melting of glaciers around the globe during the last Ice Age. The new finding has implications for rising levels of man-made greenhouse gases and retreating glaciers today.

Courtesy: National Science Foundation

For decades, researchers examining the glacial meltdown that ended 11,000 years ago took into account a number of contributing factors, particularly regional influences such as solar radiation, ice sheets and ocean currents.

But a reexamination of more than 1,000 previously studied glacial boulders has produced a more accurate timetable for the pre-historic meltdown and pinpoints the rise in carbon dioxide - then naturally occurring - as the primary driving factor in the simultaneous global retreat of glaciers at the close of the last Ice Age, the researchers report in the journal Nature Communications.

"Glaciers are very sensitive to temperature. When you get the world's glaciers retreating all at the same time, you need a broad, global reason for why the world's thermostat is going up," said Boston College Assistant Professor of Earth and Environmental Sciences Jeremy Shakun. "The only factor that explains glaciers melting all around the world in unison during the end of the Ice Age is the rise in greenhouse gases."

The researchers found that regional factors caused differences in the precise timing and pace of glacier retreat from one place to another, but carbon dioxide was the major driver of the overall global meltdown, said Shakun, a co-author of the report "Regional and global forcing of glacier retreat during the last deglaciation."

"This is a lot like today," said Shakun. "In any given decade you can always find some areas where glaciers are holding steady or even advancing, but the big picture across the world and over the long run is clear - carbon dioxide is making the ice melt."

While 11,000 years ago may seem far too distant for a point of comparison, it was only a moment ago in geological time. The team's findings fix even greater certainty on scientific conclusions that the dramatic increase in manmade greenhouse gases will eradicate many of the world's glaciers by the end of this century.

"This has relevance to today since we've already raised CO2 by more than it increased at the end of the Ice Age, and we're on track to go up much higher this century -- which adds credence to the view that most of the world's glaciers will be largely gone within the next few centuries, with negative consequences such as rising sea level and depleted water resources," said Shakun.

The team reexamined samples taken from boulders that were left by the retreating glaciers, said Shakun, who was joined in the research by experts from Oregon State University, University of Wisconsin-Madison, Purdue University and the National Center for Atmospheric Research in Boulder, Colo.

Each boulder has been exposed to cosmic radiation since the glaciers melted, an exposure that produces the isotope Beryllium-10 in the boulder. Measuring the levels of the isotope in boulder samples allows scientists to determine when glaciers melted and first uncovered the boulders.

Scientists have been using this process called surface exposure dating for more than two decades to determine when glaciers retreated, Shakun said. His team examined samples collected by multiple research teams over the years and applied an improved methodology that increased the accuracy of the boulder ages.

The team then compared their new exposure ages to the timing of the rise of carbon dioxide concentration in the atmosphere, a development recorded in air bubbles taken from ice cores. Combined with computer models, the analysis eliminated regional factors as the primary explanations for glacial melting across the globe at the end of the Ice Age. The single leading global factor that did explain the global retreat of glaciers was rising carbon dioxide levels in the air.

"Our study really removes any doubt as to the leading cause of the decline of the glaciers by 11,000 years ago - it was the rising levels of carbon dioxide in the Earth's atmosphere," said Shakun.

Carbon dioxide levels rose from approximately 180 parts per million to 280 parts per million at the end of the last Ice Age, which spanned nearly 7,000 years. Following more than a century of industrialization, carbon dioxide levels have now risen to approximately 400 parts per million.

"This tells us we are orchestrating something akin to the end of an Ice Age, but much faster. As the amount of carbon dioxide continues to increase, glaciers around the world will retreat," said Shakun.

Media Contact

Ed Hayward
ed.hayward@bc.edu
617-552-4826

 @BostonCollege

http://www.bc.edu 

Ed Hayward | EurekAlert!

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>