Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Ice Age ended, greenhouse gas rise was lead factor in melting of Earth's glaciers

21.08.2015

New findings have implications for recent carbon dioxide rise and melting glaciers

A fresh look at some old rocks has solved a crucial mystery of the last Ice Age, yielding an important new finding that connects to the global retreat of glaciers caused by climate change today, according to a new study by a team of climate scientists.


Improved dating methods reveal that the rise in carbon dioxide levels was the primary cause of the simultaneous melting of glaciers around the globe during the last Ice Age. The new finding has implications for rising levels of man-made greenhouse gases and retreating glaciers today.

Courtesy: National Science Foundation

For decades, researchers examining the glacial meltdown that ended 11,000 years ago took into account a number of contributing factors, particularly regional influences such as solar radiation, ice sheets and ocean currents.

But a reexamination of more than 1,000 previously studied glacial boulders has produced a more accurate timetable for the pre-historic meltdown and pinpoints the rise in carbon dioxide - then naturally occurring - as the primary driving factor in the simultaneous global retreat of glaciers at the close of the last Ice Age, the researchers report in the journal Nature Communications.

"Glaciers are very sensitive to temperature. When you get the world's glaciers retreating all at the same time, you need a broad, global reason for why the world's thermostat is going up," said Boston College Assistant Professor of Earth and Environmental Sciences Jeremy Shakun. "The only factor that explains glaciers melting all around the world in unison during the end of the Ice Age is the rise in greenhouse gases."

The researchers found that regional factors caused differences in the precise timing and pace of glacier retreat from one place to another, but carbon dioxide was the major driver of the overall global meltdown, said Shakun, a co-author of the report "Regional and global forcing of glacier retreat during the last deglaciation."

"This is a lot like today," said Shakun. "In any given decade you can always find some areas where glaciers are holding steady or even advancing, but the big picture across the world and over the long run is clear - carbon dioxide is making the ice melt."

While 11,000 years ago may seem far too distant for a point of comparison, it was only a moment ago in geological time. The team's findings fix even greater certainty on scientific conclusions that the dramatic increase in manmade greenhouse gases will eradicate many of the world's glaciers by the end of this century.

"This has relevance to today since we've already raised CO2 by more than it increased at the end of the Ice Age, and we're on track to go up much higher this century -- which adds credence to the view that most of the world's glaciers will be largely gone within the next few centuries, with negative consequences such as rising sea level and depleted water resources," said Shakun.

The team reexamined samples taken from boulders that were left by the retreating glaciers, said Shakun, who was joined in the research by experts from Oregon State University, University of Wisconsin-Madison, Purdue University and the National Center for Atmospheric Research in Boulder, Colo.

Each boulder has been exposed to cosmic radiation since the glaciers melted, an exposure that produces the isotope Beryllium-10 in the boulder. Measuring the levels of the isotope in boulder samples allows scientists to determine when glaciers melted and first uncovered the boulders.

Scientists have been using this process called surface exposure dating for more than two decades to determine when glaciers retreated, Shakun said. His team examined samples collected by multiple research teams over the years and applied an improved methodology that increased the accuracy of the boulder ages.

The team then compared their new exposure ages to the timing of the rise of carbon dioxide concentration in the atmosphere, a development recorded in air bubbles taken from ice cores. Combined with computer models, the analysis eliminated regional factors as the primary explanations for glacial melting across the globe at the end of the Ice Age. The single leading global factor that did explain the global retreat of glaciers was rising carbon dioxide levels in the air.

"Our study really removes any doubt as to the leading cause of the decline of the glaciers by 11,000 years ago - it was the rising levels of carbon dioxide in the Earth's atmosphere," said Shakun.

Carbon dioxide levels rose from approximately 180 parts per million to 280 parts per million at the end of the last Ice Age, which spanned nearly 7,000 years. Following more than a century of industrialization, carbon dioxide levels have now risen to approximately 400 parts per million.

"This tells us we are orchestrating something akin to the end of an Ice Age, but much faster. As the amount of carbon dioxide continues to increase, glaciers around the world will retreat," said Shakun.

Media Contact

Ed Hayward
ed.hayward@bc.edu
617-552-4826

 @BostonCollege

http://www.bc.edu 

Ed Hayward | EurekAlert!

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>