Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Ice Age ended, greenhouse gas rise was lead factor in melting of Earth's glaciers

21.08.2015

New findings have implications for recent carbon dioxide rise and melting glaciers

A fresh look at some old rocks has solved a crucial mystery of the last Ice Age, yielding an important new finding that connects to the global retreat of glaciers caused by climate change today, according to a new study by a team of climate scientists.


Improved dating methods reveal that the rise in carbon dioxide levels was the primary cause of the simultaneous melting of glaciers around the globe during the last Ice Age. The new finding has implications for rising levels of man-made greenhouse gases and retreating glaciers today.

Courtesy: National Science Foundation

For decades, researchers examining the glacial meltdown that ended 11,000 years ago took into account a number of contributing factors, particularly regional influences such as solar radiation, ice sheets and ocean currents.

But a reexamination of more than 1,000 previously studied glacial boulders has produced a more accurate timetable for the pre-historic meltdown and pinpoints the rise in carbon dioxide - then naturally occurring - as the primary driving factor in the simultaneous global retreat of glaciers at the close of the last Ice Age, the researchers report in the journal Nature Communications.

"Glaciers are very sensitive to temperature. When you get the world's glaciers retreating all at the same time, you need a broad, global reason for why the world's thermostat is going up," said Boston College Assistant Professor of Earth and Environmental Sciences Jeremy Shakun. "The only factor that explains glaciers melting all around the world in unison during the end of the Ice Age is the rise in greenhouse gases."

The researchers found that regional factors caused differences in the precise timing and pace of glacier retreat from one place to another, but carbon dioxide was the major driver of the overall global meltdown, said Shakun, a co-author of the report "Regional and global forcing of glacier retreat during the last deglaciation."

"This is a lot like today," said Shakun. "In any given decade you can always find some areas where glaciers are holding steady or even advancing, but the big picture across the world and over the long run is clear - carbon dioxide is making the ice melt."

While 11,000 years ago may seem far too distant for a point of comparison, it was only a moment ago in geological time. The team's findings fix even greater certainty on scientific conclusions that the dramatic increase in manmade greenhouse gases will eradicate many of the world's glaciers by the end of this century.

"This has relevance to today since we've already raised CO2 by more than it increased at the end of the Ice Age, and we're on track to go up much higher this century -- which adds credence to the view that most of the world's glaciers will be largely gone within the next few centuries, with negative consequences such as rising sea level and depleted water resources," said Shakun.

The team reexamined samples taken from boulders that were left by the retreating glaciers, said Shakun, who was joined in the research by experts from Oregon State University, University of Wisconsin-Madison, Purdue University and the National Center for Atmospheric Research in Boulder, Colo.

Each boulder has been exposed to cosmic radiation since the glaciers melted, an exposure that produces the isotope Beryllium-10 in the boulder. Measuring the levels of the isotope in boulder samples allows scientists to determine when glaciers melted and first uncovered the boulders.

Scientists have been using this process called surface exposure dating for more than two decades to determine when glaciers retreated, Shakun said. His team examined samples collected by multiple research teams over the years and applied an improved methodology that increased the accuracy of the boulder ages.

The team then compared their new exposure ages to the timing of the rise of carbon dioxide concentration in the atmosphere, a development recorded in air bubbles taken from ice cores. Combined with computer models, the analysis eliminated regional factors as the primary explanations for glacial melting across the globe at the end of the Ice Age. The single leading global factor that did explain the global retreat of glaciers was rising carbon dioxide levels in the air.

"Our study really removes any doubt as to the leading cause of the decline of the glaciers by 11,000 years ago - it was the rising levels of carbon dioxide in the Earth's atmosphere," said Shakun.

Carbon dioxide levels rose from approximately 180 parts per million to 280 parts per million at the end of the last Ice Age, which spanned nearly 7,000 years. Following more than a century of industrialization, carbon dioxide levels have now risen to approximately 400 parts per million.

"This tells us we are orchestrating something akin to the end of an Ice Age, but much faster. As the amount of carbon dioxide continues to increase, glaciers around the world will retreat," said Shakun.

Media Contact

Ed Hayward
ed.hayward@bc.edu
617-552-4826

 @BostonCollege

http://www.bc.edu 

Ed Hayward | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>