Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017

Pond formation mechanism previously unknown

When spring comes to the Arctic, the breakup of the cold winter ice sheets starts at the surface with the formation of melt ponds. These pools of melted snow and ice darken the surface of the ice, increasing the amount of solar energy the ice sheet absorbs and accelerating melt.


Ken Golden drills a sea ice core to measure fluid permeability of the porous ice, as Chris Polashenski clears away the excess snow and ice.

Credit: Amanda Kowalski©Woods Hole Oceanographic Institution

A team including University of Utah mathematician Kenneth Golden has determined how these melt ponds form, solving a paradoxical mystery of how a pool of water actually sits atop highly porous ice. Their results are published in Journal of Geophysical Research - Oceans.

"Here we're presented with this fundamental puzzle," Golden says. "How in the world do you form ponds? When they form, how deep they are, and their areal extent is absolutely critical for how the ice is going to melt."

Golden studies the dynamics of sea ice, which is a composite system of solids and liquids of varying salinity and chemistry. Melt ponds are a focus of his research because they dramatically affect the albedo, or reflectiveness, of the sea ice, one of the most important parameters in climate modeling. They also may allow more light to penetrate through the ice, allowing algae to proliferate in the seawater beneath.

In 2014, Golden, along with study first author Chris Polashenski of the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory and colleagues traveled aboard the U.S. Coast Guard cutter Healy to the Chukchi Sea, between Alaska and Siberia, to investigate massive algae blooms below the ice, which had been first observed in 2011. As part of their study they needed to measure the permeability of the ice. Permeability is a measure of how well interconnected voids and channels within a material allow fluid to flow through.

Their first attempt involved drilling a hole in the ice down below the "freeboard level," or water table, to see how quickly the water filled the hole back in.

"It filled up to the freeboard level in about a second and a half," Golden says, indicating the ice was too permeable to make a measurement. Next, the team tried to add water to the hole to see how quickly the water level re-equilibrated to the freeboard level. They planned several attempts, and noticed that in the second attempt, the water level fell much more slowly than in the first attempt.

"And then the third time was the charm," Golden says. The team poured water into the hole and the level didn't go down at all. "We formed a melt pond!" he says.

Intrigued, the team tested different levels of water salinity in boreholes and used dyes to trace the progress of the water through the ice. (The team used red and green food coloring from the Healy's kitchen, Golden says). All of their experimentation pointed to a clear mechanism for melt pond formation.

"The freezing point of the fresh meltwater from snow is zero Celsius," Golden says. "But the ice itself is maybe -1 or -1.5. The freezing point of seawater is -1.8. So basically, you're getting this infusion of fresh water and there's enough cold there to clog up the pores. You're lowering the permeability of the ice by this process of freezing freshwater plugs into the porous microstructure." With lowered permeability, the meltwater can form a pool on top of the ice.

Others, including Polashenski, had speculated that such a process might be behind melt pond formation, Golden says, but that his team was in the right place at the right time with the right equipment to put the story together in the field. Hopefully, he says, understanding the conditions that lead to melt pond formation can help scientists predict where and when ponds might form as Arctic temperatures continue to rise.

###

Hear Golden and Polashenski on the Arctic ice in this 2014 radio story.

Find this release and accompanying images here.

Find the full paper here.

Media Contact

Paul Gabrielsen
paul.gabrielsen@utah.edu
801-505-8253

 @uofunews

http://www.unews.utah.edu/ 

Paul Gabrielsen | EurekAlert!

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>