Central parts of Antarctica's ice sheet have been stable for millions of years, from a time when conditions were considerably warmer than now, research suggests.
The study of mountains in West Antarctica will help scientists improve their predictions of how the region might respond to continuing climate change. Its findings could also show how ice loss might contribute to sea level rise.
Although the discovery demonstrates the long-term stability of some parts of Antarctica's ice sheet, scientists remain concerned that ice at its coastline is vulnerable to rising temperatures.
Researchers from the Universities of Edinburgh and Northumbria studied rocks on slopes of the Ellsworth Mountains, whose peaks protrude through the ice sheet.
By mapping and analysing surface rocks -- including measuring their exposure to cosmic rays - researchers calculated that the mountains have been shaped by an ice sheet over a million-year period, beginning in a climate some 20C warmer than at present.
The last time such climates existed in the mountains of Antarctica was 14 million years ago when vegetation grew in the mountains and beetles thrived. Antarctica's climate at the time would be similar to that of modern day Patagonia or Greenland.
This time marked the start of a period of cooling and the growth of a large ice sheet that extended offshore around the Antarctic continent. Glaciers have subsequently cut deep into the landscape, leaving a high-tide mark - known as a trimline -- in the exposed peaks of the Ellsworth range.
The extended ice sheet cooled the oceans and atmosphere, helping form the world of today, researchers say. Their study is among the first to find evidence for this period in West Antarctica.
The research, published in Earth and Planetary Science Letters, was done in collaboration with the Scottish Universities Environmental Research Centre. It was funded by the UK Natural Environment Research Council and supported by British Antarctic Survey.
Professor David Sugden, of the University of Edinburgh's School of GeoSciences, said: "These findings help us understand how the Antarctic Ice Sheet has evolved, and to fine-tune our models and predict its future. The preservation of old rock surfaces is testimony to the stability of at least the central parts of the Antarctic Ice Sheet -- but we are still very concerned over other parts of Antarctica amid climate change."
Catriona Kelly | EurekAlert!
Further reports about: > Antarctic > Antarctic continent > Environmental Research > cosmic rays > ice loss > ice sheet > sea level > sea level rise
Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America
Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy
New research could literally squeeze more power out of solar cells
20.04.2018 | Physics and Astronomy
New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | Physics and Astronomy