Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient marine algae provides clues of climate change im pact on today’s microscopic ocean organisms

28.11.2014

A study of ancient marine algae, led by the University of Southampton, has found that climate change affected their growth and skeleton structure, which has potential significance for today’s equivalent microscopic organisms that play an important role in the world’s oceans.

Coccolithophores, a type of marine algae, are prolific in the ocean today and have been for millions of years. These single-celled plankton produce calcite skeletons that are preserved in seafloor sediments after death. Although coccolithophores are microscopic, their abundance makes them key contributors to marine ecosystems and the global carbon cycle.


The image shows a scanning electron micrograph of fossil coccolithophore species Coccolithus pelagicus. The fossil is from New Jersey and is around 56 million years old. Credit: Paul Bown at UCL

There is, therefore, much current interest in how coccolithophore calcification might be affected by climate change and ocean acidification, both of which occur as atmospheric carbon dioxide increases.

The research, published in Nature Communications, examined preserved fossil remains of coccolithophores from a period of climate warming and ocean acidification that occurred around 56 million years ago – the Paleocene Eocene Thermal Maximum (PETM) – and provides a much-needed long-term perspective of coccolithophore response to ocean acidification.

Dr Sarah O’Dea, from Ocean and Earth Science at the University of Southampton and lead author of the study, says: “Our results show that climate change significantly altered coccolithophore calcification rates at the PETM and has the potential to be just as significant, perhaps even more so, today. Ultimately then, it is the factors that influence where species live, their abundance, how fast they grow and their ability to adapt to environmental change that is likely to control future coccolithophore calcite production.”

The study investigated two key PETM coccolithophores, Coccolithus pelagicus and Toweius pertusus, both of which are directly related to species that dominate the modern ocean.

It found that calcification rates of C. pelagicus and T. pertusus halved during the PETM, due to changes in environmental factors that influenced their growth. The response of each species was, however, different, and involved intervals of slowed growth in C. pelagicus and an overall reduction in the size of the skeletal components – coccoliths – in T. pertusus. Intriguingly though, there was very little evidence for any response to ocean acidification, other than perhaps a slight thinning of C. pelagicus coccoliths..

Dr Samantha Gibbs, from Ocean and Earth Science at the University of Southampton, who was Dr O’Dea’s PhD supervisor and co-author of the study, says: “A key objective was to record calcification in fossil coccolithophores in a way that enabled direct comparison with measurements from living specimens. Our novel technique involved analysing coccolithophore skeletal remains and applying observations from modern specimens to estimate, for the first time, calcification rates of fossil coccolithophores.”

The study, which also involved researchers from the National Oceanography Centre, Southampton and University College London, was funded by a Natural Environment Research Council (NERC) studentship to Dr O’Dea and a Royal Society Research Fellowship to Dr Gibbs, Senior Research Fellow in Ocean and Earth Science at the University of Southampton, with additional support by the UK Ocean Acidification Research Programme.

Notes for editors
1. The attached image shows a scanning electron micrograph of fossil coccolithophore species Coccolithus pelagicus. The fossil is from New Jersey and is around 56 million years old. Credit: Paul Bown at UCL.

2. A copy of the study ‘Coccolithophore calcification response to past
ocean acidification and climate change’ by Sarah A. O’Dea, Samantha J. Gibbs, Paul R. Bown, Jeremy R. Young, Alex J. Poulton, Cherry Newsam and Paul A. Wilson (DOI: 10.1038/ncomms6363) is available from Media Relations on request.

3. Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world. http://www.southampton.ac.uk/

http://www.southampton.ac.uk/weareconnected

#weareconnected
For more information:

Glenn Harris, Media Relations, University of Southampton, Tel 023 8059 3212, email G.Harris@soton.ac.uk, Twitter: @glennh75

www.soton.ac.uk/mediacentre/

Follow us on twitter: http://twitter.com/unisouthampton

Like us on Facebook: www.facebook.com/unisouthampton

Glenn Harris | AlphaGalileo

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>