Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A simpler way to estimate the feedback between permafrost carbon and climate

06.10.2015

Berkeley Lab scientist leads effort to shed light on a potentially huge player in the planet's climate

One of the big unknowns in predicting climate change is the billions of tons of carbon frozen in Arctic permafrost. As global warming causes soil temperatures to increase, some of this carbon will decompose and enter the atmosphere and accelerate climate change.


The new approach includes data from recently compiled soil carbon maps of permafrost in Alaska, Canada, and Russia.

Credit: Berkeley Lab

Although permafrost carbon has the potential to be a huge player in the planet's climate, it's difficult to predict the amount that will enter the atmosphere for a given increase in temperature. That's because the current way to estimate feedback between permafrost carbon and climate is by using complex Earth system models that include a wide range of atmospheric and land surface phenomena. When it comes to representing the dynamics of permafrost carbon, these models don't use data from direct observations of the amount of carbon that is currently frozen in Arctic permafrost.

Now, a team of researchers led by a scientist from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a simple model of permafrost carbon based on direct observations. Their approach could help climate scientists evaluate how well permafrost dynamics are represented in the Earth system models used to predict climate change.

The scientists present their research in a paper published online Oct. 5 in the journal Philosophical Transactions of the Royal Society A.

"In the classic way of evaluating how well climate models account for permafrost carbon, scientists ask: Does the model predict soil carbon levels that are close to what is observed?" says Charlie Koven, a staff scientist in Berkeley Lab's Climate and Ecosystem Sciences Division who led the research.

"But we flipped the question and started with: What are the actual, observed stocks of carbon in the soil? With this approach, we built the simplest possible model of Arctic permafrost carbon and its dynamics," Koven says.

Their approach takes into account recently developed soil carbon maps that identify the distribution and type of carbon in permafrost soils in Alaska, Canada, and Russia. It also includes a meta-analysis of several lab studies in which permafrost was held at a constant above-freezing temperature for months or even years. These incubation experiments quantify the rates of carbon lost due to permafrost thaw. A third component is a meta-analysis of soil thermal models that track soil dynamics in response to climate warming. These models account for the effects of melting snow, freezing and thawing of soils, and differences in soil thermal properties, to name a few phenomena.

The scientists ran their simplified model under two scenarios. In one scenario, fossil fuel emissions begin to curb dramatically by the middle of this century and the global temperature increases 1.8 degrees Celsius. In the other scenario, fossil fuel emissions continue at current rates unchecked and the global temperature increases 3.4 degrees Celsius.

They averaged the results from the two scenarios, and found that for every one degree Celsius of global warming, the amount of permafrost carbon that enters the atmosphere is equivalent to 1.5 years of global carbon dioxide emissions.

"We found for a given amount of warming, there is an extra amount of carbon released, which would lead to further warming--in other words, a feedback loop," says Koven.

Koven notes that their approach doesn't include many important processes that may increase or mitigate carbon release from permafrost soils.

"But the beauty of simple models is they are very easy to understand. We know exactly what goes into this," Koven adds. "The processes responsible for permafrost carbon-climate feedback have not been well represented in many models, and our approach is a way to start. It serves as a data-constrained estimate on the large-scale permafrost carbon response to warming."

The research was funded partly by the Department of Energy's Office of Science.

###

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Additional information:

A paper on this research, entitled "A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback" is published online Oct. 5 in the journal Philosophical Transactions of the Royal Society A.

Media Contact

Dan Krotz
dakrotz@lbl.gov
510-486-4019

 @BerkeleyLab

http://www.lbl.gov 

Dan Krotz | EurekAlert!

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>