Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A scientist and a supercomputer re-create a tornado

14.03.2017

With tornado season fast approaching or already underway in vulnerable states throughout the U.S., new supercomputer simulations are giving meteorologists unprecedented insight into the structure of monstrous thunderstorms and tornadoes. One such recent simulation recreates a tornado-producing supercell thunderstorm that left a path of destruction over the Central Great Plains in 2011.

The person behind that simulation is Leigh Orf, a scientist with the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison. He leads a group of researchers who use computer models to unveil the moving parts inside tornadoes and the supercells that produce them. The team has developed expertise creating in-depth visualizations of supercells and discerning how they form and ultimately spawn tornadoes.


When a tornado is fully formed, the simulation reveals several structures that make up the tornado, including the streamwise vorticity current (SVC), thought to be a main driver of the tornadic activity (seen in yellow).

Credit: UW-Madison

The work is particularly relevant because the U.S. leads the global tornado count with more than 1,200 touchdowns annually, according to the National Oceanic and Atmospheric Administration.

In May 2011, several tornadoes touched down over the Oklahoma landscape in a short, four-day assemblage of storms. One after the other, supercells spawned funnel clouds that caused significant property damage and loss of life. On May 24, one tornado in particular - the "El Reno" - registered as an EF-5, the strongest tornado category on the Enhanced Fujita scale. It remained on the ground for nearly two hours and left a path of destruction 63-miles long.

Orf's most recent simulation recreates the El Reno tornado, revealing in high-resolution the numerous "mini-tornadoes" that form at the onset of the main tornado. As the funnel cloud develops, they begin to merge, adding strength to the tornado and intensifying wind speeds. Eventually, new structures form, including what Orf refers to as the streamwise vorticity current (SVC).

"The SVC is made up of rain-cooled air that is sucked into the updraft that drives the whole system," says Orf. "It's believed that this is a crucial part in maintaining the unusually strong storm, but interestingly, the SVC never makes contact with the tornado. Rather, it flows up and around it."

Using real-world observational data, the research team was able to recreate the weather conditions present at the time of the storm and witness the steps leading up to the creation of the tornado. The archived data, taken from a short-term operational model forecast, was in the form of an atmospheric sounding, a vertical profile of temperature, air pressure, wind speed and moisture. When combined in the right way, these parameters can create the conditions suitable for tornado formation, known as tornadogenesis.

According to Orf, producing a tornado requires a couple of "non-negotiable" parts, including abundant moisture, instability and wind shear in the atmosphere, and a trigger that moves the air upwards, like a temperature or moisture difference. However, the mere existence of these parts in combination does not mean that a tornado is inevitable.

"In nature, it's not uncommon for storms to have what we understand to be all the right ingredients for tornadogenesis and then nothing happens," says Orf. "Storm chasers who track tornadoes are familiar with nature's unpredictability, and our models have shown to behave similarly."

Orf explains that unlike a typical computer program, where code is written to deliver consistent results, modelling on this level of complexity has inherent variability, and in some ways he finds it encouraging since the real atmosphere exhibits this variability, too.

Successful modeling can be limited by the quality of the input data and the processing power of computers. To achieve greater levels of accuracy in the models, retrieving data on the atmospheric conditions immediately prior to tornado formation is ideal, but it remains a difficult and potentially dangerous task. With the complexity of these storms, there can be subtle (and currently unknown) factors in the atmosphere that influence whether or not a supercell forms a tornado.

Digitally resolving a tornado simulation to a point where the details are fine enough to yield valuable information requires immense processing power. Fortunately, Orf had earned access to a high-performance supercomputer, specifically designed to handle complex computing needs: the Blue Waters Supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign

In total, their EF-5 simulation took more than three days of run time. In contrast, it would take decades for a conventional desktop computer to complete this type of processing.

Looking ahead, Orf is working on the next phase of this research and continues to share the group's findings with scientists and meteorologists across the country. In January 2017, the group's research was featured on the cover of the Bulletin of the American Meteorological Society.

"We've completed the EF-5 simulation, but we don't plan to stop there," says Orf. "We are going to keep refining the model and continue to analyze the results to better understand these dangerous and powerful systems."

###

Orf's work was supported by CIMSS/SSEC, the College of Science and Technology at Central Michigan University and the National Science Foundation (NSF). The research is part of the Blue Waters sustained-petascale computing project, funded by the NSF.

Orf's collaborators on the simulation include: Robert Wilhelmson, University of Illinois Department of Atmospheric Science; Bruce Lee of High Impact Weather Research & Consulting, LLC; and Catherine Finley of St. Louis University. Lee and Finley are members of TWISTEX, the team that included Tim Samaras, who passed away in the May 31, 2013 El Reno Supercell.

Media Contact

Leigh Orf
leigh.orf@ssec.wisc.edu
608-890-1983

 @UWMadScience

http://www.wisc.edu 

Leigh Orf | EurekAlert!

Further reports about: Atmosphere Atmospheric CIMSS SVC Tornadoes dangerous tornado formation

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>