Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A scientist and a supercomputer re-create a tornado

14.03.2017

With tornado season fast approaching or already underway in vulnerable states throughout the U.S., new supercomputer simulations are giving meteorologists unprecedented insight into the structure of monstrous thunderstorms and tornadoes. One such recent simulation recreates a tornado-producing supercell thunderstorm that left a path of destruction over the Central Great Plains in 2011.

The person behind that simulation is Leigh Orf, a scientist with the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison. He leads a group of researchers who use computer models to unveil the moving parts inside tornadoes and the supercells that produce them. The team has developed expertise creating in-depth visualizations of supercells and discerning how they form and ultimately spawn tornadoes.


When a tornado is fully formed, the simulation reveals several structures that make up the tornado, including the streamwise vorticity current (SVC), thought to be a main driver of the tornadic activity (seen in yellow).

Credit: UW-Madison

The work is particularly relevant because the U.S. leads the global tornado count with more than 1,200 touchdowns annually, according to the National Oceanic and Atmospheric Administration.

In May 2011, several tornadoes touched down over the Oklahoma landscape in a short, four-day assemblage of storms. One after the other, supercells spawned funnel clouds that caused significant property damage and loss of life. On May 24, one tornado in particular - the "El Reno" - registered as an EF-5, the strongest tornado category on the Enhanced Fujita scale. It remained on the ground for nearly two hours and left a path of destruction 63-miles long.

Orf's most recent simulation recreates the El Reno tornado, revealing in high-resolution the numerous "mini-tornadoes" that form at the onset of the main tornado. As the funnel cloud develops, they begin to merge, adding strength to the tornado and intensifying wind speeds. Eventually, new structures form, including what Orf refers to as the streamwise vorticity current (SVC).

"The SVC is made up of rain-cooled air that is sucked into the updraft that drives the whole system," says Orf. "It's believed that this is a crucial part in maintaining the unusually strong storm, but interestingly, the SVC never makes contact with the tornado. Rather, it flows up and around it."

Using real-world observational data, the research team was able to recreate the weather conditions present at the time of the storm and witness the steps leading up to the creation of the tornado. The archived data, taken from a short-term operational model forecast, was in the form of an atmospheric sounding, a vertical profile of temperature, air pressure, wind speed and moisture. When combined in the right way, these parameters can create the conditions suitable for tornado formation, known as tornadogenesis.

According to Orf, producing a tornado requires a couple of "non-negotiable" parts, including abundant moisture, instability and wind shear in the atmosphere, and a trigger that moves the air upwards, like a temperature or moisture difference. However, the mere existence of these parts in combination does not mean that a tornado is inevitable.

"In nature, it's not uncommon for storms to have what we understand to be all the right ingredients for tornadogenesis and then nothing happens," says Orf. "Storm chasers who track tornadoes are familiar with nature's unpredictability, and our models have shown to behave similarly."

Orf explains that unlike a typical computer program, where code is written to deliver consistent results, modelling on this level of complexity has inherent variability, and in some ways he finds it encouraging since the real atmosphere exhibits this variability, too.

Successful modeling can be limited by the quality of the input data and the processing power of computers. To achieve greater levels of accuracy in the models, retrieving data on the atmospheric conditions immediately prior to tornado formation is ideal, but it remains a difficult and potentially dangerous task. With the complexity of these storms, there can be subtle (and currently unknown) factors in the atmosphere that influence whether or not a supercell forms a tornado.

Digitally resolving a tornado simulation to a point where the details are fine enough to yield valuable information requires immense processing power. Fortunately, Orf had earned access to a high-performance supercomputer, specifically designed to handle complex computing needs: the Blue Waters Supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign

In total, their EF-5 simulation took more than three days of run time. In contrast, it would take decades for a conventional desktop computer to complete this type of processing.

Looking ahead, Orf is working on the next phase of this research and continues to share the group's findings with scientists and meteorologists across the country. In January 2017, the group's research was featured on the cover of the Bulletin of the American Meteorological Society.

"We've completed the EF-5 simulation, but we don't plan to stop there," says Orf. "We are going to keep refining the model and continue to analyze the results to better understand these dangerous and powerful systems."

###

Orf's work was supported by CIMSS/SSEC, the College of Science and Technology at Central Michigan University and the National Science Foundation (NSF). The research is part of the Blue Waters sustained-petascale computing project, funded by the NSF.

Orf's collaborators on the simulation include: Robert Wilhelmson, University of Illinois Department of Atmospheric Science; Bruce Lee of High Impact Weather Research & Consulting, LLC; and Catherine Finley of St. Louis University. Lee and Finley are members of TWISTEX, the team that included Tim Samaras, who passed away in the May 31, 2013 El Reno Supercell.

Media Contact

Leigh Orf
leigh.orf@ssec.wisc.edu
608-890-1983

 @UWMadScience

http://www.wisc.edu 

Leigh Orf | EurekAlert!

Further reports about: Atmosphere Atmospheric CIMSS SVC Tornadoes dangerous tornado formation

More articles from Earth Sciences:

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>