Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new 3D viewer for improved digital geoscience mapping

20.09.2016

Over the years, techniques and equipment for digital mapping have revolutionized the way geoscience field studies are performed.

Now a unique new software for virtual model interpretation and visualization, is to be presented at the 2nd Virtual Geoscience Conference (VGC 2016) in Bergen, Norway.


Simon Buckley at Uni Research CIPR in Bergen, Norway. (Photo: Andreas R. Graven)

The conference will take place on the 21-23 of September, and represents a multidisciplinary forum for geoscience researchers, geomatics and related disciplines to share their latest developments and applications. 

Simon Buckley and colleagues at Uni Research CIPR are not just hosting the conference in Bergen, but will present their latest contribution to the field:

High performance 3D viewer
A software called LIME, which is a high performance 3D viewer that can be highly useful for geoscientists returning to their office after fieldwork.

The software allows them to explore their 3D datasets and perform measurements, analysis and advanced visualization of different data types. The software is developed by the Virtual Outcrop Geology Group (VOG), a collaboration between Uni Research CIPR in Bergen and the University of Aberdeen, UK. 

– The group has been at forefront of digital outcrop geology for over ten years, pioneering many of the developments in data acquisition, processing, and distribution. To facilitate the interpretation, visualisation and communication of 3D photorealistic models, we have developed LIME for over five years, Buckley says.

On the researcher’s own laptop
One of the unique things about LIME is that it can be downloaded and used on the researcher’s own laptop, and can handle very large 3D datasets with high performance.

– It allows the users to integrate 3D models from processing software, and do analysis and interpretation, to put together lots of types of data collected in fieldwork, Buckley explains. 

Digital mapping technology for many geoscience applications is based on a combination of 3D mapping methods: laser scanning and photogrammetry – 3D modelling from images – from the ground, from boats, and from helicopters for very large mountainsides.

And more recently: from unmanned aerial vehicles, or drones.

– In addition to this we focus on fusing new imaging techniques for mapping surface properties. An example is hyperspectral imaging, an infrared imaging method that allows thesurface material content of an outcrop, building or drill core to be mapped in detail and remotely. This is what I call phase one of the digital geosciences mapping revolution, which has now become relatively mature, Buckley says.

Integration of multiple techniques
In phase two, collection of data from digital mapping is becoming ubiquitous, but researchers around the world who are new to using this type of data can still struggle with learning curves, making it difficult for the, to analyze their models, Buckley at Uni Research CIPR underscores. This is the basis for LIME:

– Here is our advantage, as we work on the integration of multiple techniques and data types, interpretation software like LIME, databases for storing, accessing and manipulating the data, and mobile devices – viewing and interpretation on tablets, in the field, Buckley says.

The models collected using digital mapping techniques, combined with the LIME software, enables geologists to study exposed outcrops and rock formations which are otherwise very difficult to access.

– Looking at details of the outcrop and dropping in new sorts of data all of a sudden becomes easier, Buckley says. Examples are integration of interpretation panels, geophysical data or a new sedimentary log, which looks at different rock types.

Key features
One of the key features of the high performance 3D viewer, is that you can integrate images and project them on to the 3D models.

– Geoscientists are therefore able to integrate different types of field data, making it a powerful tool, Buckley explains:

– In the end, we can make a very nice visual representation to show the analysis and the project datasets, which is very useful for geoscientists who want to present their results, for example to their collaborating partners and sponsors, to the public, or at conferences, Buckley says.

– Thanks to the technology and application convergence, the adoption of digital mapping techniques is having a major impact in many areas of the geosciences and beyond, Buckley says.

http://uni.no/en/news/2016/9/20/new-3d-viewer-improved-digital-geoscience-mapping/

For further information, please contact:

Simon Buckley

Uni Research

+47 9025 4928

simon.buckley@uni.no

Simon Buckley | AlphaGalileo

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>