Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A glance into the future of the Arctic

15.03.2016

Thawing ice wedges substantially change the permafrost landscape

Throughout the Arctic, ice wedges are thawing at a rapid pace. Changes to these structures, which are very common in permafrost landscapes, have a massive impact on the hydrology of the tundra. This is the result of a study carried out by an international research team in cooperation with the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), which will be published in the journal Nature Geoscience today.


Reticular structures of ice-wedge polygons in the permafrost landscape.

© Konstanze Piel

Ice wedges are a major feature of the Arctic permafrost landscape: They extend up to 40 metres into the ground and formed over the course of hundreds to thousands of years. Freezing and melting processes are responsible for the ice wedge polygon structures in the Arctic lowlands typically found in permafrost. A team of researchers around lead author Anna Liljedahl of the University of Alaska in Fairbanks has compiled and analysed the results of field studies and remote sensing analyses carried out around the polar circle.

They found that even very brief periods of above-average warm temperatures can cause rapid changes to near-surface ice wedges in the permafrost. In nine out of the ten areas under investigation, the international research team, using historical aerial images and the latest high-resolution satellite data, observed that ice wedges thawed near the surface and that the ground subsided as a result.

"The subsiding of the ground changes the ground's water flow pattern and thus the entire water balance," says Dr Julia Boike, permafrost researcher at the Alfred Wegener Institute, and one of the researchers involved in the study.

"In particular runoff increases, which means that water from the snowmelt in the spring, for example, is not absorbed by small polygon ponds in the tundra but rather is rapdily flowing towards streams and larger rivers via the newly developing hydrological networks along thawing ice wedges," the scientist explains. Model calculations performed in the study suggest that the Arctic will lose many of its lakes and wetland areas if the permafrost retreats.

"At first glance, the thaw in these areas does look insignificant, because the subsidence is often only a few decimetres," co-author Dr Guido Grosse, also based at the AWI in Potsdam, adds. However, the reorganisation of the flow pattern associated with the subsidence of the ground causes rather dramatic hydrological changes. This results in changes to the biochemical processes, which very much depend on ground moisture saturation. "We are currently observing how a permafrost-dominated system is changing into a hydrologically more complex system that is less permafrost-dominated," says Grosse about the investigations.

The permafrost contains huge amounts of frozen carbon from dead plant matter. When the temperature rises and the permafrost thaws, microorganisms become active and break down the previously trapped carbon. This in turn produces methane and carbon dioxide, which accelerates the greenhouse effect. These processes have already been investigated for slow and steady temperature increases and near-surface thawing of permafrost. However, thawing ice wedges locally lead to massive changes in such patterns.

"The future carbon balance in the permafrost regions depends on whether it will get wetter or dryer. While we are able to predict rainfall and temperature, the moisture state of the land surface and the way the microbes decompose the soil carbon also depends on how much water drains off," says Julia Boike.

Guido Grosse adds: "The processes that we have identified during these investigations and that we have modelled on local scales now can and have to be integrated into the large land surface models to allow us to better predict hydrological and biochemical processes. There will also be an indirect influence on the Arctic infrastructure, part of which is built in regions rich in ice wedges and which will thus be affected by their thawing."

Original Publication:
Anna K. Liljedahl, Julia Boike, Ronald P. Daanen, Alexander N. Fedorov, Gerald V. Frost, Guido Grosse, Larry D. Hinzman, Yoshihiro Iijima, Janet C. Jorgenson, Nadya Matveyeva, Russian Academy of Sciences; Marius Necsoiu, Martha K. Raynolds, Jorg Schulla, Ken D. Tape, Donald A. Walker, Cathy Wilson, Hironori Yabuki, and Donatella Zona: Pan-Arctic ice-wedge degradation in warming permafrost and influence on tundra hydrology, Nature Geoscience 2016; DOI: 10.1038/ngeo2674

Notes for Editors:

Changing Permafrost - a topic of the Arctic Science Summit Week - see webcast: http://livestream.com/ua-fairbanks/asswnews

Please find printable pictures on: http://www.awi.de/nc/en/about-us/service/press/press-release/ein-blick-in-die-zu...

Our new animation on permafrost - see our YouTube channel: http://www.youtube.com/watch?v=ND7TrKFm-eo&index=1&list=PLFCwd9Up8tvCdlCyXKSWxggqim0gy3TLw

More information on the topic: http://www.awi.de/en/focus/permafrost.html

Your contact persons at the Alfred Wegener Institute are:

Dr Julia Boike, tel. ++49 (0)331 288-2219 (e-mail: Julia.Boike(at)awi.de)
Dr Guido Grosse, tel. ++49 (0)331 288-2150 (e-mail: Guido.Grosse(at)awi.de) and

Dr Folke Mehrtens, Communications Dept., tel. ++49 (0)471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de)


The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>