Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A glance into the future of the Arctic

15.03.2016

Thawing ice wedges substantially change the permafrost landscape

Throughout the Arctic, ice wedges are thawing at a rapid pace. Changes to these structures, which are very common in permafrost landscapes, have a massive impact on the hydrology of the tundra. This is the result of a study carried out by an international research team in cooperation with the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), which will be published in the journal Nature Geoscience today.


Reticular structures of ice-wedge polygons in the permafrost landscape.

© Konstanze Piel

Ice wedges are a major feature of the Arctic permafrost landscape: They extend up to 40 metres into the ground and formed over the course of hundreds to thousands of years. Freezing and melting processes are responsible for the ice wedge polygon structures in the Arctic lowlands typically found in permafrost. A team of researchers around lead author Anna Liljedahl of the University of Alaska in Fairbanks has compiled and analysed the results of field studies and remote sensing analyses carried out around the polar circle.

They found that even very brief periods of above-average warm temperatures can cause rapid changes to near-surface ice wedges in the permafrost. In nine out of the ten areas under investigation, the international research team, using historical aerial images and the latest high-resolution satellite data, observed that ice wedges thawed near the surface and that the ground subsided as a result.

"The subsiding of the ground changes the ground's water flow pattern and thus the entire water balance," says Dr Julia Boike, permafrost researcher at the Alfred Wegener Institute, and one of the researchers involved in the study.

"In particular runoff increases, which means that water from the snowmelt in the spring, for example, is not absorbed by small polygon ponds in the tundra but rather is rapdily flowing towards streams and larger rivers via the newly developing hydrological networks along thawing ice wedges," the scientist explains. Model calculations performed in the study suggest that the Arctic will lose many of its lakes and wetland areas if the permafrost retreats.

"At first glance, the thaw in these areas does look insignificant, because the subsidence is often only a few decimetres," co-author Dr Guido Grosse, also based at the AWI in Potsdam, adds. However, the reorganisation of the flow pattern associated with the subsidence of the ground causes rather dramatic hydrological changes. This results in changes to the biochemical processes, which very much depend on ground moisture saturation. "We are currently observing how a permafrost-dominated system is changing into a hydrologically more complex system that is less permafrost-dominated," says Grosse about the investigations.

The permafrost contains huge amounts of frozen carbon from dead plant matter. When the temperature rises and the permafrost thaws, microorganisms become active and break down the previously trapped carbon. This in turn produces methane and carbon dioxide, which accelerates the greenhouse effect. These processes have already been investigated for slow and steady temperature increases and near-surface thawing of permafrost. However, thawing ice wedges locally lead to massive changes in such patterns.

"The future carbon balance in the permafrost regions depends on whether it will get wetter or dryer. While we are able to predict rainfall and temperature, the moisture state of the land surface and the way the microbes decompose the soil carbon also depends on how much water drains off," says Julia Boike.

Guido Grosse adds: "The processes that we have identified during these investigations and that we have modelled on local scales now can and have to be integrated into the large land surface models to allow us to better predict hydrological and biochemical processes. There will also be an indirect influence on the Arctic infrastructure, part of which is built in regions rich in ice wedges and which will thus be affected by their thawing."

Original Publication:
Anna K. Liljedahl, Julia Boike, Ronald P. Daanen, Alexander N. Fedorov, Gerald V. Frost, Guido Grosse, Larry D. Hinzman, Yoshihiro Iijima, Janet C. Jorgenson, Nadya Matveyeva, Russian Academy of Sciences; Marius Necsoiu, Martha K. Raynolds, Jorg Schulla, Ken D. Tape, Donald A. Walker, Cathy Wilson, Hironori Yabuki, and Donatella Zona: Pan-Arctic ice-wedge degradation in warming permafrost and influence on tundra hydrology, Nature Geoscience 2016; DOI: 10.1038/ngeo2674

Notes for Editors:

Changing Permafrost - a topic of the Arctic Science Summit Week - see webcast: http://livestream.com/ua-fairbanks/asswnews

Please find printable pictures on: http://www.awi.de/nc/en/about-us/service/press/press-release/ein-blick-in-die-zu...

Our new animation on permafrost - see our YouTube channel: http://www.youtube.com/watch?v=ND7TrKFm-eo&index=1&list=PLFCwd9Up8tvCdlCyXKSWxggqim0gy3TLw

More information on the topic: http://www.awi.de/en/focus/permafrost.html

Your contact persons at the Alfred Wegener Institute are:

Dr Julia Boike, tel. ++49 (0)331 288-2219 (e-mail: Julia.Boike(at)awi.de)
Dr Guido Grosse, tel. ++49 (0)331 288-2150 (e-mail: Guido.Grosse(at)awi.de) and

Dr Folke Mehrtens, Communications Dept., tel. ++49 (0)471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de)


The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>