Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A glance into the future of the Arctic

15.03.2016

Thawing ice wedges substantially change the permafrost landscape

Throughout the Arctic, ice wedges are thawing at a rapid pace. Changes to these structures, which are very common in permafrost landscapes, have a massive impact on the hydrology of the tundra. This is the result of a study carried out by an international research team in cooperation with the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), which will be published in the journal Nature Geoscience today.


Reticular structures of ice-wedge polygons in the permafrost landscape.

© Konstanze Piel

Ice wedges are a major feature of the Arctic permafrost landscape: They extend up to 40 metres into the ground and formed over the course of hundreds to thousands of years. Freezing and melting processes are responsible for the ice wedge polygon structures in the Arctic lowlands typically found in permafrost. A team of researchers around lead author Anna Liljedahl of the University of Alaska in Fairbanks has compiled and analysed the results of field studies and remote sensing analyses carried out around the polar circle.

They found that even very brief periods of above-average warm temperatures can cause rapid changes to near-surface ice wedges in the permafrost. In nine out of the ten areas under investigation, the international research team, using historical aerial images and the latest high-resolution satellite data, observed that ice wedges thawed near the surface and that the ground subsided as a result.

"The subsiding of the ground changes the ground's water flow pattern and thus the entire water balance," says Dr Julia Boike, permafrost researcher at the Alfred Wegener Institute, and one of the researchers involved in the study.

"In particular runoff increases, which means that water from the snowmelt in the spring, for example, is not absorbed by small polygon ponds in the tundra but rather is rapdily flowing towards streams and larger rivers via the newly developing hydrological networks along thawing ice wedges," the scientist explains. Model calculations performed in the study suggest that the Arctic will lose many of its lakes and wetland areas if the permafrost retreats.

"At first glance, the thaw in these areas does look insignificant, because the subsidence is often only a few decimetres," co-author Dr Guido Grosse, also based at the AWI in Potsdam, adds. However, the reorganisation of the flow pattern associated with the subsidence of the ground causes rather dramatic hydrological changes. This results in changes to the biochemical processes, which very much depend on ground moisture saturation. "We are currently observing how a permafrost-dominated system is changing into a hydrologically more complex system that is less permafrost-dominated," says Grosse about the investigations.

The permafrost contains huge amounts of frozen carbon from dead plant matter. When the temperature rises and the permafrost thaws, microorganisms become active and break down the previously trapped carbon. This in turn produces methane and carbon dioxide, which accelerates the greenhouse effect. These processes have already been investigated for slow and steady temperature increases and near-surface thawing of permafrost. However, thawing ice wedges locally lead to massive changes in such patterns.

"The future carbon balance in the permafrost regions depends on whether it will get wetter or dryer. While we are able to predict rainfall and temperature, the moisture state of the land surface and the way the microbes decompose the soil carbon also depends on how much water drains off," says Julia Boike.

Guido Grosse adds: "The processes that we have identified during these investigations and that we have modelled on local scales now can and have to be integrated into the large land surface models to allow us to better predict hydrological and biochemical processes. There will also be an indirect influence on the Arctic infrastructure, part of which is built in regions rich in ice wedges and which will thus be affected by their thawing."

Original Publication:
Anna K. Liljedahl, Julia Boike, Ronald P. Daanen, Alexander N. Fedorov, Gerald V. Frost, Guido Grosse, Larry D. Hinzman, Yoshihiro Iijima, Janet C. Jorgenson, Nadya Matveyeva, Russian Academy of Sciences; Marius Necsoiu, Martha K. Raynolds, Jorg Schulla, Ken D. Tape, Donald A. Walker, Cathy Wilson, Hironori Yabuki, and Donatella Zona: Pan-Arctic ice-wedge degradation in warming permafrost and influence on tundra hydrology, Nature Geoscience 2016; DOI: 10.1038/ngeo2674

Notes for Editors:

Changing Permafrost - a topic of the Arctic Science Summit Week - see webcast: http://livestream.com/ua-fairbanks/asswnews

Please find printable pictures on: http://www.awi.de/nc/en/about-us/service/press/press-release/ein-blick-in-die-zu...

Our new animation on permafrost - see our YouTube channel: http://www.youtube.com/watch?v=ND7TrKFm-eo&index=1&list=PLFCwd9Up8tvCdlCyXKSWxggqim0gy3TLw

More information on the topic: http://www.awi.de/en/focus/permafrost.html

Your contact persons at the Alfred Wegener Institute are:

Dr Julia Boike, tel. ++49 (0)331 288-2219 (e-mail: Julia.Boike(at)awi.de)
Dr Guido Grosse, tel. ++49 (0)331 288-2150 (e-mail: Guido.Grosse(at)awi.de) and

Dr Folke Mehrtens, Communications Dept., tel. ++49 (0)471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de)


The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>