Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


10,000-year record shows dramatic uplift at Andean volcano


Ongoing studies of a massive volcanic field in the Andes mountains show that the rapid uplift which has raised the surface more than six feet in eight years has occurred many times during the past 10,000 years.

A clearly defined ancient lakeshore that is about 600 feet above the current lake level must have been horizontal when it formed about 100 centuries ago. Since then, the southern end of the shoreline has risen 220 feet, or about 20 stories, says Brad Singer, a professor of geoscience at the University of Wisconsin-Madison.

Basil Tikoff, professor of geoscience at UW-Madison, uses a precise GPS instrument to record shoreline altitude at Laguna del Maule.

Credit: Brad Singer, University of Wisconsin-Madison

The finding, he says, "extends the current deformation behavior well into the geologic past. The shoreline appears to record a similar behavior to what we are seeing today, but over 10,000 years."

The volcanic field is known as Laguna del Maule. The dramatic finding rested on a simple, painstaking study of the ancient lakeshore, which resembles a bathtub ring. Singer and colleagues traveled along the shoreline on foot, and precisely recorded its altitude with a GPS receiver.

... more about:
»eruptions »magma »molten rock »volcanic ash »volcano

The most likely cause of the sustained rise is the long-term intrusion of molten rock beneath the lake, says Singer, who has spent more than 20 years studying volcanoes in Chile. "I was shocked that we measured this much rise. This requires the intrusion of a Half Dome's worth of magma in 10,000 years."

Half Dome, an iconic granite massif at Yosemite National Park in California, has a volume of about 1.5 cubic miles. Half Dome and similar structures form when molten rock -- magma -- cools and solidifies underground, and then the rock body is pushed upward over the eons.

The modern uplift at Maule is what convinced Singer to organize a large-scale scientific campaign to explore a dangerous, highly eruptive region. "I am not aware of magma-drive uplift at these rates, anywhere, over either of these time periods," he says.

Singer is leading a five-year National Science Foundation-funded investigation of Laguna del Maule that involves 30 scientists from the United States, Chile, Canada, Argentina and Singapore. At least 36 eruptions have occurred there during the past 20,000 years.

The researchers presented the new data on the uplift during the last 10,000 years on Dec. 16, at the annual American Geophysical Union meeting in San Francisco.

Laguna del Maule may cast light on the current -- but much slower -- uplift at the Yellowstone caldera in Wyoming and at Long Valley in California. "These volcanoes have produced super-eruptions spewing hundreds of cubic kilometers of volcanic ash, but the uplift and deformation today are far slower than what we see at the much younger Laguna del Maule volcanic field," Singer says.

The lake basin at Maule, measuring roughly 14 by 17 miles, is dominated by massive, repeated lava flows. But the full influence of Maule's volcanoes extends much farther, Singer says. "The impressive lava flows we see in the lake basin are only a fraction of the record of eruptions.

Downwind, in Argentina, deposits of volcanic ash and pumice show that the system's footprint is many times larger than what appears at the lake." Understanding the real hazards of Laguna del Maule must consider the downwind impacts of the explosive eruptions, he adds.

Chile has seen remarkable geologic activity in recent years. In 2010, the fifth-largest earthquake ever recorded on a seismometer occurred 120 miles west of Laguna del Maule.

In the past 12 months alone, Calbuco, Villarica and Copahue volcanoes have erupted.

In the United States, eruptions are often compared to the one at Mount St. Helens in 1980, which released about 1 cubic kilometer of rock. One of the 36 Laguna del Maule eruptions nearly 20,000 years ago spewed 20 times that much ash.

Other nearby volcanoes have surpassed 100 cubic kilometers, entering the realm of the "super-volcano."

The new results shed light on the force that has been "jacking up" this piece of earth's crust, Singer says. "Some people have argued that the dramatic deformations like we are seeing today could be driven by the expansion of steam above the magma."

However, gravity measurements around the lake basin by Basil Tikoff of UW-Madison and Craig Miller and Glyn Williams-Jones of Simon Fraser University in Canada suggest that steam is unlikely to be the major cause of uplift. Only solidified magma can support 67 meters of uplift, Singer says: "Steam would leak out."

The average interval between eruptions at Laguna del Maule over 20,000 years is 400 to 500 years, and the last eruption was more than 450 years ago, prior to Spanish colonization.

These findings "mean the current state of unrest is not the first," Singer says. "The crust has gone up by more than my own height in less than 10 years, but it has done similar things throughout the last 10,000 years, and likely even longer. This uplift coincides with a flare-up of large eruptions around the southern end of the lake. Thus the most likely explanation is the sustained input of new magma underground, although some of it could be due to geologic faults.

"We are trying to determine the dimensions of the active system at depth, which will help us understand the hazard," Singer adds, "but there is no way of knowing if the next eruption will be business as usual, or something outside of human experience."


David Tenenbaum, 608-265-8549,

Brad Singer | EurekAlert!

Further reports about: eruptions magma molten rock volcanic ash volcano

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>