Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing fiber optics communications

22.10.2003


Florida Tech professor quadruples amount of information carried on single cable



Dr. Syed Murshid’s eyes light up as he flips the switches, one, two, three, and four. As the Florida Tech associate professor of electrical engineering uses his optics projector, pulses of red light project onto a wall. With each click, a new concentric circle appears. The circles represent a sea change in information technology. When he’s finished, a red glowing bull’s eye shines brightly, and Murshid laughs.
"The future of fiber optics is right on target," he said.

Indeed, if the future of communications can be found in the tiny glass strand of a fiber optic cable, then Murshid’s patented discovery may change the future.



"Fiber optics has always enchanted me," Murshid said. "I was amazed when I realized that this tiny piece of glass -- only the size of a hair -- can transport so much information."

The miracle of fiber optics goes far beyond wires made of glass.

"The information signal carried through fiber optics is a beam of light, much like that projected on the wall," said Murshid. "In order to prevent a loss of signal over great distances, the glass used must be very clean."

The glass is so clean, in fact, that if the ocean was as pure, you could see the bottom from the surface.

Murshid has already discovered a way to quadruple the amount of information carried over a single fiber optic cable. Offering an example, he compares information sent through fiber optics to FM radio.

"Radio stations have to broadcast at a certain frequency, WFIT, for example, is 89.5 Megahertz here on the Space Coast," he said. "But, if you go to Tampa, you will hear a different station broadcasting on 89.5 because the distance between the two stations enable them to operate without interference."

The same used to be true for information sent through fiber optics cables. Each cable could accommodate a set of frequencies or wavelengths, but could use each individual frequency or wavelength only once. But now, through a patented process called Spatial Domain Multiplexing designed by Murshid, Dr. Barry Grossman, Florida Tech professor of electrical engineering, and Murshid’s doctoral graduate assistant Narakorn, the same fiber optic cable can transmit multiple pieces of information at the same wavelength without interference, thus significantly increasing the effective information carrying capacity of the cable.

"In this process we are able to transmit information from multiple sources at the same frequency with high reliability and high accuracy," Murshid said. "In effect, we quadruple the information-carrying capacity at a very low cost."

The information-carrying light pulses are transported through the fiber optic cable as concentric circles – giving the pattern the appearance of a target.

Dr. Ron Bailey, dean of the Florida Tech College of Engineering, said Murshid’s discovery may transform the telecommunications industry. "By increasing the capacity of a single optical fiber, Dr. Murshid’s process has eliminated the need for additional cables," said Bailey. "Up until now, if a telecommunications company needed more capacity, it was forced to undergo the expensive process of laying down more fiber. This new technology provides them with a cost-effective solution."

Murshid believes the technique that makes it possible to quadruple the amount of information carried at the same frequency on a single fiber optic cable has the potential for enormous gains in information-carrying capacity.

"We’ve been able to successfully transmit at the same frequency four independent beams of information-carrying light so far," he said. "But we’re only scratching the surface. We will be able to increase this number over time."

Jay Wilson | EurekAlert!

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>