Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing fiber optics communications

22.10.2003


Florida Tech professor quadruples amount of information carried on single cable



Dr. Syed Murshid’s eyes light up as he flips the switches, one, two, three, and four. As the Florida Tech associate professor of electrical engineering uses his optics projector, pulses of red light project onto a wall. With each click, a new concentric circle appears. The circles represent a sea change in information technology. When he’s finished, a red glowing bull’s eye shines brightly, and Murshid laughs.
"The future of fiber optics is right on target," he said.

Indeed, if the future of communications can be found in the tiny glass strand of a fiber optic cable, then Murshid’s patented discovery may change the future.



"Fiber optics has always enchanted me," Murshid said. "I was amazed when I realized that this tiny piece of glass -- only the size of a hair -- can transport so much information."

The miracle of fiber optics goes far beyond wires made of glass.

"The information signal carried through fiber optics is a beam of light, much like that projected on the wall," said Murshid. "In order to prevent a loss of signal over great distances, the glass used must be very clean."

The glass is so clean, in fact, that if the ocean was as pure, you could see the bottom from the surface.

Murshid has already discovered a way to quadruple the amount of information carried over a single fiber optic cable. Offering an example, he compares information sent through fiber optics to FM radio.

"Radio stations have to broadcast at a certain frequency, WFIT, for example, is 89.5 Megahertz here on the Space Coast," he said. "But, if you go to Tampa, you will hear a different station broadcasting on 89.5 because the distance between the two stations enable them to operate without interference."

The same used to be true for information sent through fiber optics cables. Each cable could accommodate a set of frequencies or wavelengths, but could use each individual frequency or wavelength only once. But now, through a patented process called Spatial Domain Multiplexing designed by Murshid, Dr. Barry Grossman, Florida Tech professor of electrical engineering, and Murshid’s doctoral graduate assistant Narakorn, the same fiber optic cable can transmit multiple pieces of information at the same wavelength without interference, thus significantly increasing the effective information carrying capacity of the cable.

"In this process we are able to transmit information from multiple sources at the same frequency with high reliability and high accuracy," Murshid said. "In effect, we quadruple the information-carrying capacity at a very low cost."

The information-carrying light pulses are transported through the fiber optic cable as concentric circles – giving the pattern the appearance of a target.

Dr. Ron Bailey, dean of the Florida Tech College of Engineering, said Murshid’s discovery may transform the telecommunications industry. "By increasing the capacity of a single optical fiber, Dr. Murshid’s process has eliminated the need for additional cables," said Bailey. "Up until now, if a telecommunications company needed more capacity, it was forced to undergo the expensive process of laying down more fiber. This new technology provides them with a cost-effective solution."

Murshid believes the technique that makes it possible to quadruple the amount of information carried at the same frequency on a single fiber optic cable has the potential for enormous gains in information-carrying capacity.

"We’ve been able to successfully transmit at the same frequency four independent beams of information-carrying light so far," he said. "But we’re only scratching the surface. We will be able to increase this number over time."

Jay Wilson | EurekAlert!

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>