Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise can't hide weak signals from this new receiver

14.12.2015

Electrical engineers at the University of California, San Diego developed a receiver that can detect a weak, fast, randomly occurring signal.

The study, published in the Dec. 11 issue of Science, lays the groundwork for a new class of highly sensitive communication receivers and scientific instruments that can extract faint, non-repetitive signals from noise. The advance has applications in secure communication, electronic warfare, signal intelligence, remote sensing, astronomy and spectroscopy.


Schematic of single-event noise discrimination using the spectral cloning receiver.

Credit: Photonics Systems Group at UC San Diego

The research is motivated by a long-standing need to capture random, singly-occurring phenomena in nature and in communications. An example of these includes the spontaneous decay of a molecule, an event that emits a single noisy signal and therefore eludes detection by conventional methods.

Because a standard detector must repeat measurements of the event multiple times to confirm its existence, it prevents, in principle, the capture of a random, non-repetitive event. Another limitation is that the capture of a fast event requires an equally fast detector.

To overcome the limitations of conventional detection methods, UC San Diego researchers developed a spectral-cloning receiver that works by replicating the received noisy signal to generate multiple spectral (colored) copies, and then combines these copies to reveal the existence of the signal within the noise.

"With the new receiver, it is now possible, at least in principle, to capture an ephemeral, non-repeating signal and observe fast, sparsely occurring natural or artificial phenomena--that would otherwise be invisible to us--over a long period of time, using a slow detector," said Stojan Radic, an electrical engineering professor in the Jacobs School of Engineering at UC San Diego and senior author of the study

In the Science paper, researchers report that the spectral-cloning receiver they developed "can potentially intercept communication signals that are presently considered secure." These signals are based on singly-occurring bursts, which disappear before another measurement can be taken to separate noise.

Radic also noted that the receiver could enable communication at a longer distance and with higher security. For example, it would be possible to bury the communication channel in noise and still detect it using the new receiver, while being well below the sensitivity threshold of conventional detectors.

The new receiver physics can be compared to a "temporal microscope": it can see a very fast, faint signal while observing over a much larger time interval. However, while an ordinary microscope cannot eliminate surrounding image noise, the new receiver can differentiate between the noise and the signal fields.

In their experiments, the team used a new class of tunable optical frequency combs--developed in Radic's Photonics Systems Group at UC San Diego--to simultaneously create multiple spectral clones of a fast pulse. Researchers combined these clones to extract the signal from the noise and were able to reconstruct its timing and shape. They found that a higher spectral clone count resulted in higher sensitivity of signal detection by the spectral-cloning receiver.

"We were surprised that this concept could be scaled up to a high number of spectral copies. We are now able to construct a receiver that operates on hundreds of freely tunable copies," said Radic. "This work is a result of long-standing research on tunable frequency combs at UC San Diego. The new class of combs are nearly noise-free and, in contrast to conventional frequency combs, can be freely tuned over a wide spectral range."

###

Full paper: "Subnoise detection of a fast random event," by V. Ataie, D. Esman, B. P.-P. Kuo, N. Alic, and S. Radic. The paper is published in the Dec. 11, 2015 issue of Science.

The work is funded in part by the Defense Advanced Research Projects Agency (DARPA). The University of California has filed a patent on the method and applications of random signal detection and coherent analysis.

Media Contact

Liezel Labios
llabios@ucsd.edu
858-246-1124

 @UCSanDiego

http://www.ucsd.edu 

Liezel Labios | EurekAlert!

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>