Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise can't hide weak signals from this new receiver

14.12.2015

Electrical engineers at the University of California, San Diego developed a receiver that can detect a weak, fast, randomly occurring signal.

The study, published in the Dec. 11 issue of Science, lays the groundwork for a new class of highly sensitive communication receivers and scientific instruments that can extract faint, non-repetitive signals from noise. The advance has applications in secure communication, electronic warfare, signal intelligence, remote sensing, astronomy and spectroscopy.


Schematic of single-event noise discrimination using the spectral cloning receiver.

Credit: Photonics Systems Group at UC San Diego

The research is motivated by a long-standing need to capture random, singly-occurring phenomena in nature and in communications. An example of these includes the spontaneous decay of a molecule, an event that emits a single noisy signal and therefore eludes detection by conventional methods.

Because a standard detector must repeat measurements of the event multiple times to confirm its existence, it prevents, in principle, the capture of a random, non-repetitive event. Another limitation is that the capture of a fast event requires an equally fast detector.

To overcome the limitations of conventional detection methods, UC San Diego researchers developed a spectral-cloning receiver that works by replicating the received noisy signal to generate multiple spectral (colored) copies, and then combines these copies to reveal the existence of the signal within the noise.

"With the new receiver, it is now possible, at least in principle, to capture an ephemeral, non-repeating signal and observe fast, sparsely occurring natural or artificial phenomena--that would otherwise be invisible to us--over a long period of time, using a slow detector," said Stojan Radic, an electrical engineering professor in the Jacobs School of Engineering at UC San Diego and senior author of the study

In the Science paper, researchers report that the spectral-cloning receiver they developed "can potentially intercept communication signals that are presently considered secure." These signals are based on singly-occurring bursts, which disappear before another measurement can be taken to separate noise.

Radic also noted that the receiver could enable communication at a longer distance and with higher security. For example, it would be possible to bury the communication channel in noise and still detect it using the new receiver, while being well below the sensitivity threshold of conventional detectors.

The new receiver physics can be compared to a "temporal microscope": it can see a very fast, faint signal while observing over a much larger time interval. However, while an ordinary microscope cannot eliminate surrounding image noise, the new receiver can differentiate between the noise and the signal fields.

In their experiments, the team used a new class of tunable optical frequency combs--developed in Radic's Photonics Systems Group at UC San Diego--to simultaneously create multiple spectral clones of a fast pulse. Researchers combined these clones to extract the signal from the noise and were able to reconstruct its timing and shape. They found that a higher spectral clone count resulted in higher sensitivity of signal detection by the spectral-cloning receiver.

"We were surprised that this concept could be scaled up to a high number of spectral copies. We are now able to construct a receiver that operates on hundreds of freely tunable copies," said Radic. "This work is a result of long-standing research on tunable frequency combs at UC San Diego. The new class of combs are nearly noise-free and, in contrast to conventional frequency combs, can be freely tuned over a wide spectral range."

###

Full paper: "Subnoise detection of a fast random event," by V. Ataie, D. Esman, B. P.-P. Kuo, N. Alic, and S. Radic. The paper is published in the Dec. 11, 2015 issue of Science.

The work is funded in part by the Defense Advanced Research Projects Agency (DARPA). The University of California has filed a patent on the method and applications of random signal detection and coherent analysis.

Media Contact

Liezel Labios
llabios@ucsd.edu
858-246-1124

 @UCSanDiego

http://www.ucsd.edu 

Liezel Labios | EurekAlert!

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

Im Focus: Graphene electrodes offer new functionalities in molecular electronic nanodevices

An international team of researchers led by the University of Bern and the National Physical Laboratory (NPL) has revealed a new way to tune the functionality of next-generation molecular electronic devices using graphene. The results could be exploited to develop smaller, higher-performance devices for use in a range of applications including molecular sensing, flexible electronics, and energy conversion and storage, as well as robust measurement setups for resistance standards.

The field of nanoscale molecular electronics aims to exploit individual molecules as the building blocks for electronic devices, to improve functionality and...

Im Focus: Quantum nanoscope

Seeing electrons surfing the waves of light on graphene

Researchers have studied how light can be used to "see" the quantum nature of an electronic material. They managed to do that by capturing light in a net of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

The 11th Baltic Sea Science Congress opens in Rostock: 350 scientists meet to discuss their research

12.06.2017 | Event News

 
Latest News

Gene Transfer Keeps Bacteria Fit

16.06.2017 | Life Sciences

Gut microbiota - Tiny helpers against Samonella

16.06.2017 | Life Sciences

Novel application of CRISPR/Cas9 in plants – Visualizing DNA in living cells

16.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>