Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Goddard network maintains communications from space to ground

02.03.2016

Spending nearly a year in space, 249 miles from Earth, could be a lonely prospect, but an office at NASA's Goddard Space Flight Center in Greenbelt, Maryland, made sure astronaut Scott Kelly could reach home for the entire 340-day duration of his mission. Not only could Kelly communicate with mission control in Houston, but Goddard's Network Integration Center connected him with reporters and even family.

Reliable space-to-ground communication is critical to all missions - when astronauts venture outside the International Space Station to install new equipment and perform important maintenance, as well as for any other on-orbit needs.


NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko from their Year in Space Mission. Goddard's Network Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space.

Credits: NASA/Goddard/Rebecca Roth

Data collected in space, like video transmission of a spacewalk, travel as radio signals from antennas on spacecraft to much larger antennas on Earth, some with diameters up to 230 feet. From there, they travel via cables underground, or even under the ocean, to data centers around the world where scientists collect and analyze the data.

With hundreds of satellites operating in orbit around Earth and elsewhere in the solar system, it's easy to imagine that communication channels might become overwhelmed with data from the satellites. To prevent this, NASA manages and maintains three large communications networks. A spacecraft's distance from Earth decides which network it will use.

Spacecraft in the far reaches of our solar system, such as New Horizons, just past Pluto, communicate via the Deep Space Network, while spacecraft closer to home, such as the ISS, use the Space Network or the Near Earth Network. Spacecraft utilizing the Space Network communicate using a constellation of geosynchronous Tracking and Data Relay Satellites known as TDRS.

The Near Earth Network consists of ground-based stations located around the Earth. While the Space Network generally services spacecraft in low Earth orbit, the Near Earth Network can service spacecraft in low-Earth orbit, geosynchronous orbit and even in orbit around the moon.

The Space Communications and Navigation Program office is located at NASA Headquarters in Washington. Engineers and technicians at Goddard Space Flight Center in Greenbelt, Maryland, are primarily responsible for the management and operation of the Space Network and the Near Earth Network. The Deep Space Network is managed at NASA's Jet Propulsion Laboratory in Pasadena, California.

Goddard's Network Integration Center (NIC) is the primary operations center for coordinating the communications for missions using the Near Earth Network and Space Network. Capabilities include robotic satellite missions as well as all human spaceflight missions. Service capabilities typically begin with the preflight testing of a spacecraft's communications systems prior to launch and culminates with the launch and initial in-orbit activities of the spacecraft.

Human spaceflight missions are the NIC's specialty. The center has been operational in one form or another since Project Mercury, NASA's first human spaceflight program. Maintaining communications with human-occupied spacecraft is essential for mission success regardless of whether it is in low-Earth orbit or beyond. Today the NIC is involved in all human space missions and regularly supports the ISS and the visiting cargo and crew transport vehicles that service the space station. The NIC will provide similar communication and navigation to the new commercial crew spacecraft being built by Boeing and SpaceX.

Communication and navigation for most spacecraft in low-Earth orbit is relatively straightforward, said Human Spaceflight Network Director Mark Severance, who manages the communications services from all networks during human spaceflight missions. Most low-Earth-orbit spacecraft connect with and maintain communications with one or two NASA communications networks. Future exploration missions will be more complicated.

"Typically when you fly a mission beyond Earth orbit, you launch and go around Earth a couple times, and you communicate through the Near Earth Network and the Space Network," Severance said. "Then you do a big rocket firing, you depart from Earth orbit and you're not going to return. You're then on the Deep Space Network forever. However, the return trips of human missions will require not only network handovers as the spacecraft leaves Earth, but return handovers between networks as well."

Because of this, future exploration missions will use all three of NASA's space communication's networks at various times during the mission. Not only must the NIC team ensure that all networks are functioning correctly, but that the handovers between networks are orchestrated to maintain communications between the spacecraft and mission control as it leaves Earth or approaches on its return journey. These plans can change rapidly due to in-flight complications, leaving the team to coordinate a new handover plan between the networks.

A preview of this type of mission capabilities occurred during the Orion Exploration Flight Test-1 (EFT-1) in December 2014. The flight orbited Earth twice to test NASA's new Orion spacecraft, designed to carry astronauts to destinations in deep space, including an asteroid and Mars. EFT-1 flew the Orion capsule to more than 15 times further from Earth than the International Space Station, about 3,600 miles above the planet's surface. Data collected during the flight will help finalize Orion's designs and show how the capsule performs during, and returns from, deep-space journeys. This includes testing Orion's communications capabilities with the Space Network, which was overseen by Severance's team in the NIC.

The NIC Human Space Flight team at Goddard is already planning the communications for Exploration Mission-1, the first flight of the agency's new Space Launch System rocket and Orion spacecraft to demonstrate the integrated system performance prior to the first crewed flight. Severance said this mission would be the biggest communications challenge moving forward into the next several years.

As NASA soars into space beyond Earth orbit once more, a legacy of space communications that began at Goddard more than 50 years ago continues.

###

To see video - transmitted to Earth via the NIC - of a new commander taking over control of the ISS from returning astronaut Scott Kelly on Feb. 29, please visit:

https://www.youtube.com/watch?v=p-SzZXTKWS0

Ed Campion | EurekAlert!

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>