Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer HHI and Red Bull Media House work together to develop new VLC technology applications

13.10.2015

The Visible Light Communication (VLC) technology allows for the implementation of optical WiFi environments, especially in cases when an existing radio-based solution fails. Red Bull Media House and the Fraunhofer Heinrich Hertz Institute HHI are now working together to develop a palette of promising applications using this technology.

A fast, mobile data transfer with an arbitrary, mobile positioning of transmitter and receiver is today an indispensable prerequisite for the arrangement of multimedia environments within sporting events or other similar occasions.

The use of light instead of radio waves to transfer data is an interesting alternative, which, under certain conditions such as a larger number of participants, can provide clear advantages. The challenge is to develop solutions that can connect high mobility expectations with high data rates.

The Red Bull Media House is a media company headquartered in Salzburg. Technological innovations are part of the DNA of the company, according to Andreas Gall, CTO of Red Bull Media House. “Application-oriented research is essential for us.

Since its founding, Red Bull Media House has emerged as a spearhead in the media field. The development in the area of optical data transfer is no game for me, but a technology of the future that should be taken seriously, one whom we want to lend wings to”.

Fraunhofer HHI activities in this optical mobile communication technology are of long date. Collaboration with industry is for HHI project manager Dr. Anagnostis Paraskevopoulos of great importance. “It is without question that VLC technology can transfer many innovative approaches into practical solutions. However, the litmus test for this technology will be done in a real-world setting. Together with Red Bull Media House, we are able to perform a targeted parameter optimization and promote specific applications along with product development”.

The VLC technology

The demand for wireless communication networks within buildings will further increase during the coming years. The optical light communication offers an alternative, because it simultaneously uses LED-based light sources as data transmitters, which leads to a significant extension of network capacity while maintaining the mobility expected by the users. The optical data transfer avoids all electromagnetic interference with radio networks and is by definition radio-free.

Data rates of higher than 1 Gbit/s and latencies lower than 2 ms are possible with conventional LEDs, which allows for unproblematic broadband real-time video streaming in highest quality (2/4/8K). With only a few additional components, the standard LED light can be turned into a high performance optical WiFi transmitter. A special modulator turns the light diodes on and off in fast rhythm – this is how the digital information is transferred.

Weitere Informationen:

http://www.hhi.fraunhofer.de/vlc

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

Im Focus: Austrian and Chinese Academies of Sciences successfully conducted first Inter-Continental Quantum Video Call

The two Academy presidents Chunli Bai and Anton Zeilinger tested quantum encrypted communication between Beijing and Vienna in a live-experiment. The quantum key was transmitted via the Chinese quantum satellite Micius.

From quantum cryptography to the quantum internet – fundamental research into the world of the quantum promises several new tech opportunities in the future....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

The LBT gets polarized: First light for the PEPSI polarimeters

13.10.2017 | Physics and Astronomy

IVAM Product Market presents future intelligent medical technologies at COMPAMED 2017

13.10.2017 | Trade Fair News

Cold molecules on collision course

13.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>