Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where light and motion become one

02.12.2014

Physicist Tobias Kippenberg measures and manipulates oscillators that are tiny yet still visible to the naked eye. Their optical and mechanical properties are governed by the laws of quantum physics. In recognition of his innovative work he has been awarded the National Latsis Prize 2014.

The laws of quantum physics apply in general at very small scales, governing the behaviour of elementary particles or atoms. Tobias Kippenberg, professor at the Laboratory of Photonics and Quantum Measurements at the Swiss Federal Institute of Technology Lausanne (École Polytechnique Fédérale de Lausanne, EPFL), is seeking to discover, observe and study these laws in macroscopic “mechanical resonators” that are formed from billions of atoms. The 38-year old physicist’s basic research in cavity quantum optomechanics has earned him the National Latsis Prize 2014.

Following his undergraduate degree at the Technical University of Aachen, which preceded a Master of Science, a PhD and post-doctorate research at Caltech in Pasadena, California, Tobias Kippenberg spent a number of years as an independent researcher at the Max Planck Institute of Quantum Optics in Germany, where he collaborated with physics Nobel laureate, Professor Theodor Hänsch. He joined EPFL in 2008 and was promoted to full professor in 2013.

Tiny structures
His current work focuses on miniature ring-shaped glass oscillators, with spokes like bicycle wheels, that are just 24 microns in diameter, corresponding to less than half the width of a human hair. Light is able to move around the circumference of the ring (as though within the tyre of the bicycle wheel), producing by means of internal reflection what the physicists term “radiation pressure.” The result is a slight mechanical vibration.

The resonators are designed to allow them to store photons (light) and phonons (vibrations) in a micro cavity for a relatively long period of time.

Almost absolute zero
In Tobias Kippenberg’s experiments, the device is first cooled to within half a degree of absolute zero (-273.15 °C). However, even this extreme cold is not sufficient to allow quantum behaviour to be observed, as the thermal excitation in the mechanical oscillator causes what is called “quantum decoherence.” In an article published in Nature in 2012, Kippenberg and his team showed for the first time that by further reducing the temperature of the mechanical oscillator by injecting laser light, they were able to reach the regime of “quantum coherent coupling” between light and a mechanical oscillator. During this process, the interaction between the light and vibrations of the resonator is so strong that its mechanical and optical properties cannot be separated. The exchange of the quantum states between the mechanical oscillator and the light field becomes in this regime faster than their decoherence.

At this point, the oscillator is so cold that it spends more than a third of its time in its quantum state. In this mode, it exhibits min-imum vibration that can only be described by the laws of quantum mechanics (a theory that predicts in particular that an object can never be perfectly immobile, even when its temperature is at absolute zero).

Practical quantum physics
In parallel to his basic research on quantum optomechanics, Tobias Kippenberg also considers the applications of his work. In particular, he has discovered another remarkable property of microresonators: by connecting the light of a laser beam to a microresonator using an optical fibre it is possible to produce a so-called optical frequency comb.

Frequency combs are used in particular in the ultra high-precision calibration of astronomical spectrometers or to improve the accuracy of atomic clocks. The problem with current devices is that they are table-sized, extremely complex and have a very fine teeth spacing. Tobias Kippenberg’s devices, in contrast, are miniaturised, exhibit large comb teeth spacing and are constructed using the same techniques as those used to manufacture electronic chips. His first patent for this technology was registered in 2007, with a second following in 2013. The German researcher now hopes to take the next step towards the commercialisation of his invention, with a start-up company.

The National Latsis Prize, which is worth CHF 100,000, is among the most important scientific honours in Switzerland. The SNSF awards the prize on behalf of the International Latsis Foundation to young researchers up to the age of 40 for exceptional scientific work conducted in Switzerland.
The prize, which will be awarded for the thirty first time this year, will be presented in a ceremony at the town-hall in Berne, at 10.30 to 12.00 hours on 14 January 2015 in Berne. Attendance at the ceremony is open to members of the press and media.

Short biography:
Tobias Kippenberg was born in Berlin in 1976, growing up in Groningen in the Netherlands and Bremen in Germany. He obtained a bachelor’s degree in physics at Aachen. He then went on to complete a master’s in 2000 and a PhD in 2004, and to conduct post-doctorate research at Caltech in Pasadena, California. Following a number of years as an independent researcher at the Max Planck Institute of Quantum Optics in Germany and a Habilitation degree from the LMU Munich, he gained a post at the EPFL where he was made professor in 2013.

An in-depth article on Tobias Kippenberg can be found in the latest edition of the Swiss research magazine “Horizons”, which has just been published: www.snsf.ch/ horizons
You can download photographs of Tobias Kippenberg at: www.snsf.ch > Research in focus > Media > Press releases

The Latsis Foundation prizes
The Latsis Foundation was created in Geneva in 1975, by the Greek Latsis family. The Swiss National Science Foundation awards the National Latsis Prize on behalf of the Foundation. There are also four University Latsis Prizes of CHF 25,000 each. These are awarded by the University of Geneva, the University of St. Gallen, the ETHZ and the EPFL.

Contakt
Prof. Tobias Kippenberg
Laboratoire de Photonique et de Mesure Quantique (LPQM)
EPFL
CH-1015 Lausanne
Tel: +41 21 693 4428
E-Mail: tobias.kippenberg@epfl.ch


Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-141202-press-release-where-light-and-motion-become-one.aspx

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>