Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What breath reveals: detecting diseases with infrared sensors / prestigious prize for chemists

13.07.2016

'Please blow into this bag': what is known to drivers from traffic controls could increasingly complement blood checks in medical examinations. Scientists around Professor Boris Mizaikoff, Director of the Institute of Analytical and Bioanalytical Chemistry (IABC) at Ulm University, developed a breath gas analysis method ('μbreath') which allows them to diagnose various diseases in humans – in some cases before they even break out. The team recently received an award by the British Royal Society of Chemistry for their application-oriented infrared sensors.

'The body's metabolism is reflected in the compounds present in the exhaled breath. On the basis of minuscule molecules, which are chemically altered or changed in presence or concentration in the case of physical disease, not only diseases of the lungs but also of the liver, the kidneys and even breast cancer can be diagnosed at – more or less – early stages,' Professor Boris Mizaikoff explains.


Prof. Mizaikoff’s advanced breath diagnostic device

Eberhardt/Ulm University

Because the low concentration of the trace gases requires highly sensitive instruments, breath gas analysis had been too expensive for the average medical practice – until now. In collaboration with specialised companies Mizaikoff currently develops a novel, cost-efficient method which can measure several trace gases simultaneously in small sample volumes. The so-called infrared spectroscopy takes place inside a hollow optical waveguide – developed by the IABC – into which the patient's exhaled breath is pumped.

In this mixture a frequency-tunable laser beam detects 'molecular fingerprints' of disease-specific biomarkers. The measured concentration of these markers might even make it possible to draw conclusions regarding the stage of a disease, as well as the treatment progress. Another advantage of μbreath:

The optical waveguides can be integrated into very small substrates, and in the future also into tiny chips, and are therefore much more versatile in their application. There is one current limitation: 'Changes in breath gas can also have non-pathological causes – due to diet for example. Therefore, to avoid measurement errors our sensor should be combined with an orthogonal analytical method in medical diagnostics for the time being,' Boris Mizaikoff says.

Ulm University offers an exceptional biomedical research environment for the optimisation of this non-invasive technology: at the collaborative trauma research centre 1149, for example, Mizaikoff’s team conducts sensor experiments in collaboration with the team around Professor Peter Radermacher, Director of the Institute of Anaesthesiologic Pathophysiology and Process Development at Ulm University Hospital.

'We were already able to demonstrate in the mouse model that it is possible to continuously monitor liver function with a μbreath analyser connected to a lung ventilator,' the chemist states. Moreover, relevant basics of lung physiology are being researched at the recently accredited graduate school PULMOSENS – and the fellows might quite possibly haul breath gas analysis into clinical application. A spin-off is certainly conceivable.

In fact, the novel technology is not limited to medical diagnostics but is also applied in environmental analytics. It all started as a collaboration with the Lawrence Livermore National Laboratory (LLNL, USA): the German-American scientists had been searching for a way to detect gaseous hazardous substances – and now their patented technology is the basis of breath gas diagnostics.

With the second prize of the 'Emerging Technology Competition' (category 'Health and Wellbeing'), hosted by the 'Royal Society of Chemistry', come valuable industry contacts, support for a potential spin-off by a global player, plus 3000 British pounds as reward for the research team around Professor Mizaikoff. The first prize went to the researchers of Scottish St. Andrews University.

'We never dreamed of receiving a prize for application-oriented technologies for a novel analytical method which we first published only three years ago in the journal "Analytical Chemistry",' says the researcher from Ulm. The jury members are top-class representatives of the pharmaceutical industry, which suggests great potential for μbreath. 'The interest within industry is high: we already receive numerous enquiries regarding our breath gas analytics,' Professor Mizaikoff adds.

The measuring method is currently being refined under Mizaikoff’s leadership in the course of the 'Advanced Photonic Sensor Materials' project. The project is funded by the Federal Ministry of Education and Research (BMBF) as part of the programme M-ERA.NET. Highly specialised companies in Germany and Austria are involved alongside the Institute of Analytical and Bioanalytical Chemistry.

Further information: Prof. Dr. Boris Mizaikoff: +49 731 50-22750, boris.mizaikoff@uni-ulm.de

Weitere Informationen:

http://t1p.de/rcs-winners2016 Winners „Emerging Technologies Competition“

Annika Bingmann | idw - Informationsdienst Wissenschaft

Further reports about: Analytical Chemistry breath infrared sensors lung trace gases

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>