Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What breath reveals: detecting diseases with infrared sensors / prestigious prize for chemists

13.07.2016

'Please blow into this bag': what is known to drivers from traffic controls could increasingly complement blood checks in medical examinations. Scientists around Professor Boris Mizaikoff, Director of the Institute of Analytical and Bioanalytical Chemistry (IABC) at Ulm University, developed a breath gas analysis method ('μbreath') which allows them to diagnose various diseases in humans – in some cases before they even break out. The team recently received an award by the British Royal Society of Chemistry for their application-oriented infrared sensors.

'The body's metabolism is reflected in the compounds present in the exhaled breath. On the basis of minuscule molecules, which are chemically altered or changed in presence or concentration in the case of physical disease, not only diseases of the lungs but also of the liver, the kidneys and even breast cancer can be diagnosed at – more or less – early stages,' Professor Boris Mizaikoff explains.


Prof. Mizaikoff’s advanced breath diagnostic device

Eberhardt/Ulm University

Because the low concentration of the trace gases requires highly sensitive instruments, breath gas analysis had been too expensive for the average medical practice – until now. In collaboration with specialised companies Mizaikoff currently develops a novel, cost-efficient method which can measure several trace gases simultaneously in small sample volumes. The so-called infrared spectroscopy takes place inside a hollow optical waveguide – developed by the IABC – into which the patient's exhaled breath is pumped.

In this mixture a frequency-tunable laser beam detects 'molecular fingerprints' of disease-specific biomarkers. The measured concentration of these markers might even make it possible to draw conclusions regarding the stage of a disease, as well as the treatment progress. Another advantage of μbreath:

The optical waveguides can be integrated into very small substrates, and in the future also into tiny chips, and are therefore much more versatile in their application. There is one current limitation: 'Changes in breath gas can also have non-pathological causes – due to diet for example. Therefore, to avoid measurement errors our sensor should be combined with an orthogonal analytical method in medical diagnostics for the time being,' Boris Mizaikoff says.

Ulm University offers an exceptional biomedical research environment for the optimisation of this non-invasive technology: at the collaborative trauma research centre 1149, for example, Mizaikoff’s team conducts sensor experiments in collaboration with the team around Professor Peter Radermacher, Director of the Institute of Anaesthesiologic Pathophysiology and Process Development at Ulm University Hospital.

'We were already able to demonstrate in the mouse model that it is possible to continuously monitor liver function with a μbreath analyser connected to a lung ventilator,' the chemist states. Moreover, relevant basics of lung physiology are being researched at the recently accredited graduate school PULMOSENS – and the fellows might quite possibly haul breath gas analysis into clinical application. A spin-off is certainly conceivable.

In fact, the novel technology is not limited to medical diagnostics but is also applied in environmental analytics. It all started as a collaboration with the Lawrence Livermore National Laboratory (LLNL, USA): the German-American scientists had been searching for a way to detect gaseous hazardous substances – and now their patented technology is the basis of breath gas diagnostics.

With the second prize of the 'Emerging Technology Competition' (category 'Health and Wellbeing'), hosted by the 'Royal Society of Chemistry', come valuable industry contacts, support for a potential spin-off by a global player, plus 3000 British pounds as reward for the research team around Professor Mizaikoff. The first prize went to the researchers of Scottish St. Andrews University.

'We never dreamed of receiving a prize for application-oriented technologies for a novel analytical method which we first published only three years ago in the journal "Analytical Chemistry",' says the researcher from Ulm. The jury members are top-class representatives of the pharmaceutical industry, which suggests great potential for μbreath. 'The interest within industry is high: we already receive numerous enquiries regarding our breath gas analytics,' Professor Mizaikoff adds.

The measuring method is currently being refined under Mizaikoff’s leadership in the course of the 'Advanced Photonic Sensor Materials' project. The project is funded by the Federal Ministry of Education and Research (BMBF) as part of the programme M-ERA.NET. Highly specialised companies in Germany and Austria are involved alongside the Institute of Analytical and Bioanalytical Chemistry.

Further information: Prof. Dr. Boris Mizaikoff: +49 731 50-22750, boris.mizaikoff@uni-ulm.de

Weitere Informationen:

http://t1p.de/rcs-winners2016 Winners „Emerging Technologies Competition“

Annika Bingmann | idw - Informationsdienst Wissenschaft

Further reports about: Analytical Chemistry breath infrared sensors lung trace gases

More articles from Awards Funding:

nachricht Scientist at Kiel University receive EU funding to develop new implantats
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>