Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What breath reveals: detecting diseases with infrared sensors / prestigious prize for chemists

13.07.2016

'Please blow into this bag': what is known to drivers from traffic controls could increasingly complement blood checks in medical examinations. Scientists around Professor Boris Mizaikoff, Director of the Institute of Analytical and Bioanalytical Chemistry (IABC) at Ulm University, developed a breath gas analysis method ('μbreath') which allows them to diagnose various diseases in humans – in some cases before they even break out. The team recently received an award by the British Royal Society of Chemistry for their application-oriented infrared sensors.

'The body's metabolism is reflected in the compounds present in the exhaled breath. On the basis of minuscule molecules, which are chemically altered or changed in presence or concentration in the case of physical disease, not only diseases of the lungs but also of the liver, the kidneys and even breast cancer can be diagnosed at – more or less – early stages,' Professor Boris Mizaikoff explains.


Prof. Mizaikoff’s advanced breath diagnostic device

Eberhardt/Ulm University

Because the low concentration of the trace gases requires highly sensitive instruments, breath gas analysis had been too expensive for the average medical practice – until now. In collaboration with specialised companies Mizaikoff currently develops a novel, cost-efficient method which can measure several trace gases simultaneously in small sample volumes. The so-called infrared spectroscopy takes place inside a hollow optical waveguide – developed by the IABC – into which the patient's exhaled breath is pumped.

In this mixture a frequency-tunable laser beam detects 'molecular fingerprints' of disease-specific biomarkers. The measured concentration of these markers might even make it possible to draw conclusions regarding the stage of a disease, as well as the treatment progress. Another advantage of μbreath:

The optical waveguides can be integrated into very small substrates, and in the future also into tiny chips, and are therefore much more versatile in their application. There is one current limitation: 'Changes in breath gas can also have non-pathological causes – due to diet for example. Therefore, to avoid measurement errors our sensor should be combined with an orthogonal analytical method in medical diagnostics for the time being,' Boris Mizaikoff says.

Ulm University offers an exceptional biomedical research environment for the optimisation of this non-invasive technology: at the collaborative trauma research centre 1149, for example, Mizaikoff’s team conducts sensor experiments in collaboration with the team around Professor Peter Radermacher, Director of the Institute of Anaesthesiologic Pathophysiology and Process Development at Ulm University Hospital.

'We were already able to demonstrate in the mouse model that it is possible to continuously monitor liver function with a μbreath analyser connected to a lung ventilator,' the chemist states. Moreover, relevant basics of lung physiology are being researched at the recently accredited graduate school PULMOSENS – and the fellows might quite possibly haul breath gas analysis into clinical application. A spin-off is certainly conceivable.

In fact, the novel technology is not limited to medical diagnostics but is also applied in environmental analytics. It all started as a collaboration with the Lawrence Livermore National Laboratory (LLNL, USA): the German-American scientists had been searching for a way to detect gaseous hazardous substances – and now their patented technology is the basis of breath gas diagnostics.

With the second prize of the 'Emerging Technology Competition' (category 'Health and Wellbeing'), hosted by the 'Royal Society of Chemistry', come valuable industry contacts, support for a potential spin-off by a global player, plus 3000 British pounds as reward for the research team around Professor Mizaikoff. The first prize went to the researchers of Scottish St. Andrews University.

'We never dreamed of receiving a prize for application-oriented technologies for a novel analytical method which we first published only three years ago in the journal "Analytical Chemistry",' says the researcher from Ulm. The jury members are top-class representatives of the pharmaceutical industry, which suggests great potential for μbreath. 'The interest within industry is high: we already receive numerous enquiries regarding our breath gas analytics,' Professor Mizaikoff adds.

The measuring method is currently being refined under Mizaikoff’s leadership in the course of the 'Advanced Photonic Sensor Materials' project. The project is funded by the Federal Ministry of Education and Research (BMBF) as part of the programme M-ERA.NET. Highly specialised companies in Germany and Austria are involved alongside the Institute of Analytical and Bioanalytical Chemistry.

Further information: Prof. Dr. Boris Mizaikoff: +49 731 50-22750, boris.mizaikoff@uni-ulm.de

Weitere Informationen:

http://t1p.de/rcs-winners2016 Winners „Emerging Technologies Competition“

Annika Bingmann | idw - Informationsdienst Wissenschaft

Further reports about: Analytical Chemistry breath infrared sensors lung trace gases

More articles from Awards Funding:

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht Six German-Russian Research Groups Receive Three Years of Funding
12.09.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>