Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the fruit fly’s nose

24.11.2015

The National Latsis Prize 2015 has been awarded to biologist Richard Benton for his work on the fruit fly's sense of smell. Using an interdisciplinary approach he studies how chemical signals control the behaviour of insects.

How odours influence actions is one of the fundamental questions in neuroscience. Richard Benton, associate professor at the Center for Integrative Genomics at the University of Lausanne, follows the molecular trail of chemical messages from the nose to the brain of insects. For his work, the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation awards Benton with the National Latsis Prize 2015.

The 38-year-old researcher mainly studies the model organism Drosophila melanogaster, the common vinegar fly, to decipher the molecular logic of how insects receive chemical signals to distinguish kin, mates, competitors, prey and predators.

This involves identifying the receptors in the nose and the neurons in the brain that respond to information insects receive via their sense of smell. Benton tries to understand how a specific substance triggers activity in certain regions of the brain to provoke particular behaviours.

Similarities to humans

“Although the fruit fly’s nose is simpler than our own, odour perception in insects is strikingly similar to how humans detect smells,” Benton explains. “It becomes apparent when you look at how their neural circuits are organised and respond to odours.” What we learn from the fruit fly can therefore help us better understand neural circuits in more complex brains.

One particular interest of Benton’s group is to define how pheromones are detected. Insects – like most animals – use chemical signals to attract mates, to mark their paths or their territory, and to signal danger. The British researcher investigates the molecular pathways for pheromone sensing to explain how these vital chemical messages in minute quantities are detected and how they specifically trigger the correct behavioural response.

Benton is also interested in understanding how nervous systems evolve, over thousands of generations, to adapt an animal’s behaviour to its environment. Some species of flies, for example, feed only on specific fruits. This specialisation is accompanied by changes in their smell receptor genes and the wiring of neurons in the brain. Understanding the genetic changes that underlie the tweaking of the structure and function of neural circuits is important to understand how brains are built and operate.

Repel harmful insects

The studies are not restricted to provide fundamental knowledge on neuroscience. “From the basic research my group conducts it is only a small step to practical applications,” says Benton.

Understanding molecular mechanisms of the insect’s sense of smell may give researchers clues on how to interfere and manipulate odour-evoked behaviours in the wild. For example, Benton’s findings in Drosophila melanogaster could inspire solutions to help trap or ward off closely related Drosophila suzukii, a pest that is damaging grape and strawberry crops.

“Our findings also have the potential to reduce the incidence of human diseases.” Malaria, dengue fever or sleeping sickness are transmitted by bloodsucking insects including mosquitoes and tsetse flies, who rely on their sense of smell to find their hosts.

Richard Benton

Born in Edinburgh in 1977, Richard Benton’s studies took him to Cambridge where he obtained his PhD in biology. He worked as a post-doctoral fellow at The Rockefeller University in New York between 2003 and 2007. He then joined the Center for Integrative Genomics at the University of Lausanne as an assistant professor and became associate professor in 2012.

Benton has won several prizes and received ERC Starting and Consolidator Grants. The passionate pianist is married to a professor of microbiology and father of two children aged eight and five.

A portrait of Richard Benton can be found in the latest edition of the Swiss research magazine Horizons.

Video portrait with Richard Benton

You can download photographs of Richard Benton at:www.snsf.ch > Research in focus > Media > Press releases


National Latsis Prize

The National Latsis Prize worth CHF 100,000 is among the most important scientific honours in Switzerland. The Swiss National Science Foundation (SNSF) awards the prize on behalf of the «Fondation Latsis Internationale» to young researchers up to the age of 40 for exceptional scientific work conducted in Switzerland.

The Latsis Foundation was established in 1975 by the Latsis family in Geneva. The prize is awarded for the 32nd time this year and will be presented in a ceremony at the Rathaus in Berne on 22 January 2016. Interested members of the media may register via email: com@snf.ch

Contact

Prof. Richard Benton
Center for Integrative Genomics
Faculty of Biology and Medicine
University of Lausanne
CH-1015 Lausanne
Phone: +41 (0)21 692 39 32 and +41 (0)78 911 32 13
Email: richard.benton@unil.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-151124-horizons-benton-... Current Issue - Horizons No. 107, December 2015
https://youtu.be/ZFTUp5HN26U Video portrait "Latsis Prize awarded to fruit fly researcher Richard Benton" © SNSF / Rhône Productions.
http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-151124-press-release-la... Download photographs of Richard Benton

Media - Abteilung Kommunikation | Schweizerischer Nationalfonds SNF

Further reports about: Drosophila Genomics SNF SNSF insects neural circuits sense sense of smell

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>