Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the fruit fly’s nose

24.11.2015

The National Latsis Prize 2015 has been awarded to biologist Richard Benton for his work on the fruit fly's sense of smell. Using an interdisciplinary approach he studies how chemical signals control the behaviour of insects.

How odours influence actions is one of the fundamental questions in neuroscience. Richard Benton, associate professor at the Center for Integrative Genomics at the University of Lausanne, follows the molecular trail of chemical messages from the nose to the brain of insects. For his work, the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation awards Benton with the National Latsis Prize 2015.

The 38-year-old researcher mainly studies the model organism Drosophila melanogaster, the common vinegar fly, to decipher the molecular logic of how insects receive chemical signals to distinguish kin, mates, competitors, prey and predators.

This involves identifying the receptors in the nose and the neurons in the brain that respond to information insects receive via their sense of smell. Benton tries to understand how a specific substance triggers activity in certain regions of the brain to provoke particular behaviours.

Similarities to humans

“Although the fruit fly’s nose is simpler than our own, odour perception in insects is strikingly similar to how humans detect smells,” Benton explains. “It becomes apparent when you look at how their neural circuits are organised and respond to odours.” What we learn from the fruit fly can therefore help us better understand neural circuits in more complex brains.

One particular interest of Benton’s group is to define how pheromones are detected. Insects – like most animals – use chemical signals to attract mates, to mark their paths or their territory, and to signal danger. The British researcher investigates the molecular pathways for pheromone sensing to explain how these vital chemical messages in minute quantities are detected and how they specifically trigger the correct behavioural response.

Benton is also interested in understanding how nervous systems evolve, over thousands of generations, to adapt an animal’s behaviour to its environment. Some species of flies, for example, feed only on specific fruits. This specialisation is accompanied by changes in their smell receptor genes and the wiring of neurons in the brain. Understanding the genetic changes that underlie the tweaking of the structure and function of neural circuits is important to understand how brains are built and operate.

Repel harmful insects

The studies are not restricted to provide fundamental knowledge on neuroscience. “From the basic research my group conducts it is only a small step to practical applications,” says Benton.

Understanding molecular mechanisms of the insect’s sense of smell may give researchers clues on how to interfere and manipulate odour-evoked behaviours in the wild. For example, Benton’s findings in Drosophila melanogaster could inspire solutions to help trap or ward off closely related Drosophila suzukii, a pest that is damaging grape and strawberry crops.

“Our findings also have the potential to reduce the incidence of human diseases.” Malaria, dengue fever or sleeping sickness are transmitted by bloodsucking insects including mosquitoes and tsetse flies, who rely on their sense of smell to find their hosts.

Richard Benton

Born in Edinburgh in 1977, Richard Benton’s studies took him to Cambridge where he obtained his PhD in biology. He worked as a post-doctoral fellow at The Rockefeller University in New York between 2003 and 2007. He then joined the Center for Integrative Genomics at the University of Lausanne as an assistant professor and became associate professor in 2012.

Benton has won several prizes and received ERC Starting and Consolidator Grants. The passionate pianist is married to a professor of microbiology and father of two children aged eight and five.

A portrait of Richard Benton can be found in the latest edition of the Swiss research magazine Horizons.

Video portrait with Richard Benton

You can download photographs of Richard Benton at:www.snsf.ch > Research in focus > Media > Press releases


National Latsis Prize

The National Latsis Prize worth CHF 100,000 is among the most important scientific honours in Switzerland. The Swiss National Science Foundation (SNSF) awards the prize on behalf of the «Fondation Latsis Internationale» to young researchers up to the age of 40 for exceptional scientific work conducted in Switzerland.

The Latsis Foundation was established in 1975 by the Latsis family in Geneva. The prize is awarded for the 32nd time this year and will be presented in a ceremony at the Rathaus in Berne on 22 January 2016. Interested members of the media may register via email: com@snf.ch

Contact

Prof. Richard Benton
Center for Integrative Genomics
Faculty of Biology and Medicine
University of Lausanne
CH-1015 Lausanne
Phone: +41 (0)21 692 39 32 and +41 (0)78 911 32 13
Email: richard.benton@unil.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-151124-horizons-benton-... Current Issue - Horizons No. 107, December 2015
https://youtu.be/ZFTUp5HN26U Video portrait "Latsis Prize awarded to fruit fly researcher Richard Benton" © SNSF / Rhône Productions.
http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-151124-press-release-la... Download photographs of Richard Benton

Media - Abteilung Kommunikation | Schweizerischer Nationalfonds SNF

Further reports about: Drosophila Genomics SNF SNSF insects neural circuits sense sense of smell

More articles from Awards Funding:

nachricht ERC: Six Advanced Grants for Helmholtz
10.04.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>