Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the fruit fly’s nose

24.11.2015

The National Latsis Prize 2015 has been awarded to biologist Richard Benton for his work on the fruit fly's sense of smell. Using an interdisciplinary approach he studies how chemical signals control the behaviour of insects.

How odours influence actions is one of the fundamental questions in neuroscience. Richard Benton, associate professor at the Center for Integrative Genomics at the University of Lausanne, follows the molecular trail of chemical messages from the nose to the brain of insects. For his work, the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation awards Benton with the National Latsis Prize 2015.

The 38-year-old researcher mainly studies the model organism Drosophila melanogaster, the common vinegar fly, to decipher the molecular logic of how insects receive chemical signals to distinguish kin, mates, competitors, prey and predators.

This involves identifying the receptors in the nose and the neurons in the brain that respond to information insects receive via their sense of smell. Benton tries to understand how a specific substance triggers activity in certain regions of the brain to provoke particular behaviours.

Similarities to humans

“Although the fruit fly’s nose is simpler than our own, odour perception in insects is strikingly similar to how humans detect smells,” Benton explains. “It becomes apparent when you look at how their neural circuits are organised and respond to odours.” What we learn from the fruit fly can therefore help us better understand neural circuits in more complex brains.

One particular interest of Benton’s group is to define how pheromones are detected. Insects – like most animals – use chemical signals to attract mates, to mark their paths or their territory, and to signal danger. The British researcher investigates the molecular pathways for pheromone sensing to explain how these vital chemical messages in minute quantities are detected and how they specifically trigger the correct behavioural response.

Benton is also interested in understanding how nervous systems evolve, over thousands of generations, to adapt an animal’s behaviour to its environment. Some species of flies, for example, feed only on specific fruits. This specialisation is accompanied by changes in their smell receptor genes and the wiring of neurons in the brain. Understanding the genetic changes that underlie the tweaking of the structure and function of neural circuits is important to understand how brains are built and operate.

Repel harmful insects

The studies are not restricted to provide fundamental knowledge on neuroscience. “From the basic research my group conducts it is only a small step to practical applications,” says Benton.

Understanding molecular mechanisms of the insect’s sense of smell may give researchers clues on how to interfere and manipulate odour-evoked behaviours in the wild. For example, Benton’s findings in Drosophila melanogaster could inspire solutions to help trap or ward off closely related Drosophila suzukii, a pest that is damaging grape and strawberry crops.

“Our findings also have the potential to reduce the incidence of human diseases.” Malaria, dengue fever or sleeping sickness are transmitted by bloodsucking insects including mosquitoes and tsetse flies, who rely on their sense of smell to find their hosts.

Richard Benton

Born in Edinburgh in 1977, Richard Benton’s studies took him to Cambridge where he obtained his PhD in biology. He worked as a post-doctoral fellow at The Rockefeller University in New York between 2003 and 2007. He then joined the Center for Integrative Genomics at the University of Lausanne as an assistant professor and became associate professor in 2012.

Benton has won several prizes and received ERC Starting and Consolidator Grants. The passionate pianist is married to a professor of microbiology and father of two children aged eight and five.

A portrait of Richard Benton can be found in the latest edition of the Swiss research magazine Horizons.

Video portrait with Richard Benton

You can download photographs of Richard Benton at:www.snsf.ch > Research in focus > Media > Press releases


National Latsis Prize

The National Latsis Prize worth CHF 100,000 is among the most important scientific honours in Switzerland. The Swiss National Science Foundation (SNSF) awards the prize on behalf of the «Fondation Latsis Internationale» to young researchers up to the age of 40 for exceptional scientific work conducted in Switzerland.

The Latsis Foundation was established in 1975 by the Latsis family in Geneva. The prize is awarded for the 32nd time this year and will be presented in a ceremony at the Rathaus in Berne on 22 January 2016. Interested members of the media may register via email: com@snf.ch

Contact

Prof. Richard Benton
Center for Integrative Genomics
Faculty of Biology and Medicine
University of Lausanne
CH-1015 Lausanne
Phone: +41 (0)21 692 39 32 and +41 (0)78 911 32 13
Email: richard.benton@unil.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-151124-horizons-benton-... Current Issue - Horizons No. 107, December 2015
https://youtu.be/ZFTUp5HN26U Video portrait "Latsis Prize awarded to fruit fly researcher Richard Benton" © SNSF / Rhône Productions.
http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-151124-press-release-la... Download photographs of Richard Benton

Media - Abteilung Kommunikation | Schweizerischer Nationalfonds SNF

Further reports about: Drosophila Genomics SNF SNSF insects neural circuits sense sense of smell

More articles from Awards Funding:

nachricht CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research
24.05.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>