Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two ERC Advanced Grants for Scientists at the Leibniz Institute for Interactive Materials

08.04.2016

Prof. Dr. Martin Möller and Prof. Dr.-Ing. Matthias Wessling from the DWI – Leibniz Institute for Interactive Materials and the RWTH Aachen University both receive an Advanced Grant from the European Research Council (ERC). The European Research Council uses its Advanced Grants to financially support outstanding, well-established scientists with up to 2.5 Million Euro and thereby allows them to pursue groundbreaking high-risk research in Europe. Martin Möller will apply this grant to develop gel-based micro-engines for future applications in biomedicine whereas Matthias Wessling will analyze and optimize mass transport at membrane-fluid interfaces.

Sophisticated micro- and nano-objects, as well as functional materials, are Martin Möller’s expertise. Within his ERC-funded project, he strives to make an important contribution to the development of gel-based, light-triggered micro-engines, which could be used to develop new self-actuating materials. These materials may be implemented to biomechanically stimulate cells and tissues in biological and medical applications.


Prof. Dr. Martin Möller

Phatcharin Tha-in


Prof. Dr.-Ing. Matthias Wessling

Phatcharin Tha-in

In addition, the project will be a starting point for the development of gel-based microfluidic pumps and self-actuating swimmers and transporters. For this purpose, Martin Möller and his team of polymer chemists use hydrogels, which contain 80 to 98 percent water. By uptake and release of this water, these hydrogels can significantly change their shape.

By using infrared light pulses, Martin Möller and his colleagues were already able to induce transient shape deformations in the gels, leading to fast moving gel architectures with a rate up to 2000 micrometers per second. Within the ERC, Möller aims to obtain fast motion under continuous IR-irradiation by the development of a self-oscillating system with iterative pulsation.

Matthias Wessling’s field of research is membrane technology and he is turning Aachen into an internationally leading center for membrane research. Synthetic membranes play an important role in many industrial processes and medical applications, including water desalination, waste water or waste gas treatment, and applications, such as an artificial lung or kidney.

Current highly permeable and selective membrane materials can only reach top performance if the transport resistance at the membrane-fluid interface is minimized. Matthias Wessling will use his ERC grant to develop new interaction mechanisms that reduce such transport resistances and improve mass transfer. For this purpose, he will analyze and optimize the membrane surface geometry and chemical structure down to the micro- and nanoscale.

In addition, he will engineer the channel structure in membrane set-ups to improve fluid flow. In his project, Wessling will combine classical membrane technology with micro- and nanofluidics, generative nanofabrication, as well as fluid mechanical computer simulations.

In 2014 and 2015 respectively, two DWI junior research group leaders each received an ERC Starting Grant. Since January 2015, the DWI coordinates the Marie Skłodowska-Curie training network BIOGEL, approved by the European Commission. Therefore, five major projects at DWI are currently funded via Horizon 2020, the prestigious EU framework program for research and innovation.

1) Prof. Dr. Martin Möller
Since 2002, Martin Möller heads the Chair of Textile Chemistry and Macromolecular Chemistry at RWTH Aachen University, after being a professor at the University of Twente in the Netherlands and Ulm University. Since 2003, he is the Scientific Director of DWI. In 2003, he was decorated with the Körber European Science Prize. In 2014, the ‘Gesellschaft Deutscher Chemiker’ awarded him the Hermann-Staudinger prize. His field of research focuses on the synthesis of novel polymers and self-assembly of polymer systems.

2) Prof. Dr.-Ing. Matthias Wessling
Since 2010, Matthias Wessling heads the Chair of Chemical Process Engineering at RWTH Aachen University and he is the Vice Scientific Director of DWI. He was Senior Research Scientist at Membrane Technology and Research Inc., Menlo Park, CA and head of the Department of Separation Processes at Akzo Nobel. From 2000 to 2010, he was Chair of Membrane Science and Technology at the University of Twente. He joined the DWI scientific board in 2010 and became vice director in 2015.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>