Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two ERC Advanced Grants for Scientists at the Leibniz Institute for Interactive Materials

08.04.2016

Prof. Dr. Martin Möller and Prof. Dr.-Ing. Matthias Wessling from the DWI – Leibniz Institute for Interactive Materials and the RWTH Aachen University both receive an Advanced Grant from the European Research Council (ERC). The European Research Council uses its Advanced Grants to financially support outstanding, well-established scientists with up to 2.5 Million Euro and thereby allows them to pursue groundbreaking high-risk research in Europe. Martin Möller will apply this grant to develop gel-based micro-engines for future applications in biomedicine whereas Matthias Wessling will analyze and optimize mass transport at membrane-fluid interfaces.

Sophisticated micro- and nano-objects, as well as functional materials, are Martin Möller’s expertise. Within his ERC-funded project, he strives to make an important contribution to the development of gel-based, light-triggered micro-engines, which could be used to develop new self-actuating materials. These materials may be implemented to biomechanically stimulate cells and tissues in biological and medical applications.


Prof. Dr. Martin Möller

Phatcharin Tha-in


Prof. Dr.-Ing. Matthias Wessling

Phatcharin Tha-in

In addition, the project will be a starting point for the development of gel-based microfluidic pumps and self-actuating swimmers and transporters. For this purpose, Martin Möller and his team of polymer chemists use hydrogels, which contain 80 to 98 percent water. By uptake and release of this water, these hydrogels can significantly change their shape.

By using infrared light pulses, Martin Möller and his colleagues were already able to induce transient shape deformations in the gels, leading to fast moving gel architectures with a rate up to 2000 micrometers per second. Within the ERC, Möller aims to obtain fast motion under continuous IR-irradiation by the development of a self-oscillating system with iterative pulsation.

Matthias Wessling’s field of research is membrane technology and he is turning Aachen into an internationally leading center for membrane research. Synthetic membranes play an important role in many industrial processes and medical applications, including water desalination, waste water or waste gas treatment, and applications, such as an artificial lung or kidney.

Current highly permeable and selective membrane materials can only reach top performance if the transport resistance at the membrane-fluid interface is minimized. Matthias Wessling will use his ERC grant to develop new interaction mechanisms that reduce such transport resistances and improve mass transfer. For this purpose, he will analyze and optimize the membrane surface geometry and chemical structure down to the micro- and nanoscale.

In addition, he will engineer the channel structure in membrane set-ups to improve fluid flow. In his project, Wessling will combine classical membrane technology with micro- and nanofluidics, generative nanofabrication, as well as fluid mechanical computer simulations.

In 2014 and 2015 respectively, two DWI junior research group leaders each received an ERC Starting Grant. Since January 2015, the DWI coordinates the Marie Skłodowska-Curie training network BIOGEL, approved by the European Commission. Therefore, five major projects at DWI are currently funded via Horizon 2020, the prestigious EU framework program for research and innovation.

1) Prof. Dr. Martin Möller
Since 2002, Martin Möller heads the Chair of Textile Chemistry and Macromolecular Chemistry at RWTH Aachen University, after being a professor at the University of Twente in the Netherlands and Ulm University. Since 2003, he is the Scientific Director of DWI. In 2003, he was decorated with the Körber European Science Prize. In 2014, the ‘Gesellschaft Deutscher Chemiker’ awarded him the Hermann-Staudinger prize. His field of research focuses on the synthesis of novel polymers and self-assembly of polymer systems.

2) Prof. Dr.-Ing. Matthias Wessling
Since 2010, Matthias Wessling heads the Chair of Chemical Process Engineering at RWTH Aachen University and he is the Vice Scientific Director of DWI. He was Senior Research Scientist at Membrane Technology and Research Inc., Menlo Park, CA and head of the Department of Separation Processes at Akzo Nobel. From 2000 to 2010, he was Chair of Membrane Science and Technology at the University of Twente. He joined the DWI scientific board in 2010 and became vice director in 2015.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>