Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two ERC Advanced Grants for Scientists at the Leibniz Institute for Interactive Materials

08.04.2016

Prof. Dr. Martin Möller and Prof. Dr.-Ing. Matthias Wessling from the DWI – Leibniz Institute for Interactive Materials and the RWTH Aachen University both receive an Advanced Grant from the European Research Council (ERC). The European Research Council uses its Advanced Grants to financially support outstanding, well-established scientists with up to 2.5 Million Euro and thereby allows them to pursue groundbreaking high-risk research in Europe. Martin Möller will apply this grant to develop gel-based micro-engines for future applications in biomedicine whereas Matthias Wessling will analyze and optimize mass transport at membrane-fluid interfaces.

Sophisticated micro- and nano-objects, as well as functional materials, are Martin Möller’s expertise. Within his ERC-funded project, he strives to make an important contribution to the development of gel-based, light-triggered micro-engines, which could be used to develop new self-actuating materials. These materials may be implemented to biomechanically stimulate cells and tissues in biological and medical applications.


Prof. Dr. Martin Möller

Phatcharin Tha-in


Prof. Dr.-Ing. Matthias Wessling

Phatcharin Tha-in

In addition, the project will be a starting point for the development of gel-based microfluidic pumps and self-actuating swimmers and transporters. For this purpose, Martin Möller and his team of polymer chemists use hydrogels, which contain 80 to 98 percent water. By uptake and release of this water, these hydrogels can significantly change their shape.

By using infrared light pulses, Martin Möller and his colleagues were already able to induce transient shape deformations in the gels, leading to fast moving gel architectures with a rate up to 2000 micrometers per second. Within the ERC, Möller aims to obtain fast motion under continuous IR-irradiation by the development of a self-oscillating system with iterative pulsation.

Matthias Wessling’s field of research is membrane technology and he is turning Aachen into an internationally leading center for membrane research. Synthetic membranes play an important role in many industrial processes and medical applications, including water desalination, waste water or waste gas treatment, and applications, such as an artificial lung or kidney.

Current highly permeable and selective membrane materials can only reach top performance if the transport resistance at the membrane-fluid interface is minimized. Matthias Wessling will use his ERC grant to develop new interaction mechanisms that reduce such transport resistances and improve mass transfer. For this purpose, he will analyze and optimize the membrane surface geometry and chemical structure down to the micro- and nanoscale.

In addition, he will engineer the channel structure in membrane set-ups to improve fluid flow. In his project, Wessling will combine classical membrane technology with micro- and nanofluidics, generative nanofabrication, as well as fluid mechanical computer simulations.

In 2014 and 2015 respectively, two DWI junior research group leaders each received an ERC Starting Grant. Since January 2015, the DWI coordinates the Marie Skłodowska-Curie training network BIOGEL, approved by the European Commission. Therefore, five major projects at DWI are currently funded via Horizon 2020, the prestigious EU framework program for research and innovation.

1) Prof. Dr. Martin Möller
Since 2002, Martin Möller heads the Chair of Textile Chemistry and Macromolecular Chemistry at RWTH Aachen University, after being a professor at the University of Twente in the Netherlands and Ulm University. Since 2003, he is the Scientific Director of DWI. In 2003, he was decorated with the Körber European Science Prize. In 2014, the ‘Gesellschaft Deutscher Chemiker’ awarded him the Hermann-Staudinger prize. His field of research focuses on the synthesis of novel polymers and self-assembly of polymer systems.

2) Prof. Dr.-Ing. Matthias Wessling
Since 2010, Matthias Wessling heads the Chair of Chemical Process Engineering at RWTH Aachen University and he is the Vice Scientific Director of DWI. He was Senior Research Scientist at Membrane Technology and Research Inc., Menlo Park, CA and head of the Department of Separation Processes at Akzo Nobel. From 2000 to 2010, he was Chair of Membrane Science and Technology at the University of Twente. He joined the DWI scientific board in 2010 and became vice director in 2015.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht Six German-Russian Research Groups Receive Three Years of Funding
12.09.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>