Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxicology in flux – Fraunhofer ITEM is participating in the European research project “EU-ToxRisk”

13.01.2016

The aim of the comprehensive EU project “EU-ToxRisk” is to lay new foundations for a paradigm shift in toxicology – towards more efficient and animal-free hazard and risk assessment of chemicals. An international consortium of 39 partner organizations from academia, industry and regulatory authorities will participate in this project receiving funding of 30 million euros. The Fraunhofer Institute for Toxicology and Experimental Medicine ITEM is bringing in its expertise with a focus on inhalation toxicology. EU-ToxRisk will be kicked off in Egmont aan Zee in The Netherlands) in mid-January 2016 and will run for a period of six years.

The European Commission is funding this large-scale project “EU-ToxRisk” under its research and innovation funding scheme “Horizon 2020”. The aim is to integrate the results of the research project into future regulatory chemical safety and risk assessment and to establish new assessment concepts – not only in Europe, but worldwide. These new concepts will involve cutting-edge, human-relevant in-vitro non-animal methods and in-silico computational technologies to translate molecular mechanistic understanding of toxicity into safety testing strategies.


The Fraunhofer P.R.I.T. ®-ExpoCube® exposure system allows to study airborne substances by exposing cells or vital tissue samples from the respiratory tract directly at the air/liquid interface.

Photo: R. Meier / Fraunhofer ITEM

“We are breaking new ground in toxicology, towards mechanism-based toxicological assessment. In-vitro methods, those that are human-relevant in particular, and in-silico methods are playing a crucial role in this paradigm shift. In-silico approaches today are no longer limited to deriving the toxicity of a substance from its structure, but also include toxicity and effect profiles,” says Dr. Annette Bitsch, head of the Fraunhofer ITEM Division of Chemical Risk Assessment. She and her team will bring to this EU project their expertise in inhalation toxicology in particular, which is the specialty of the Fraunhofer researchers.

The Fraunhofer scientists will contribute the experience they have gained with alternative methods in evaluating inhalation toxicity. For example, the P.R.I.T. ®-ExpoCube® exposure system developed at the Fraunhofer ITEM allows them to study airborne substances by exposing cells or vital tissue samples from the respiratory tract directly at the air/liquid interface. Suitable in-vitro or ex-vivo models are cultures of cells from the respiratory tract or vital lung tissue samples of human or animal origin, precision-cut lung slices (PCLS) in particular.

With its broad experience gained during development and application of toxicological databases and the use of read-across methods in regulatory contexts, the Fraunhofer ITEM can make an important contribution to the EU-ToxRisk project, in particular by developing in-silico methods.

Coordinated by Bob van de Water, Professor of Toxicology at Leiden University (The Netherlands), EU-ToxRisk intends to become the European flagship for animal-free chemical safety assessment. The project will integrate advancements in cell biology, “omics” technologies, systems biology and computational modelling to define the complex chains of events that link chemical exposure to toxic outcome. The consortium will provide proof of concept for a new mechanism-based chemical safety testing strategy with a focus on repeated-dose systemic toxicity as well as developmental and reproductive toxicity. Importantly, novel mechanism-based test methods will be integrated into fit-for-purpose testing batteries that are in line with the regulatory framework and will meet the requirements of industrial implementation. EU-ToxRisk will develop new quantitative risk assessment approaches based on understanding of so-called “Adverse Outcome Pathways” incorporating all mechanistic toxicity data available in the public domain. It will also achieve a rapid improvement of so-called “read across” approaches, to allow existing data gaps to be filled by means of alternative methods.

Contact
Fraunhofer ITEM
Dr. Annette Bitsch; +49 511 5350-302
annette.bitsch@item.fraunhofer.de

Press contact
Fraunhofer ITEM
Dr. Cathrin Nastevska; +49 511 5350-225
cathrin.nastevska@item.fraunhofer.de

Weitere Informationen:

The text of this press release including an image for download can be found on our homepage at
http://www.item.fraunhofer.de/en/press-media/latest-news/pm-toxikologieimwandel....

Presse Institute | Fraunhofer-Gesellschaft

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>