Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tingye Li Innovation Prize awarded to Marcus Seidel

09.06.2016

Marcus Seidel, who joined the group of Prof. Ferenc Krausz in 2012, has been selected as the winner of the Tingye Li Innovation Prize at the Conference on Lasers and Electro-Optics (CLEO 2016).

In honor of the Chinese-American physicist Dr. Tingye Li (1931-2012) and his fundamental research in particular on laser modes and optical communication, the Optical Society of America (OSA) Foundation annually awards two young scientists for their innovative work in the field of optics and photonics.


Marcus Seidel at the LAP

Photo: Thorsten Naeser

In his scientific work Marcus Seidel strongly contributed to the development of Watt-class femtosecond sources at mid-IR wavelengths beyond the oxygen absorption edge around 5 µm.

These coherent light sources offer great potential for diverse spectroscopy applications in the so-called molecular fingerprint region as well as for field-sensitive nonlinear optics. They are highly attractive for being employed in both fundamental and applied physics.

The research has combined the unique properties of very powerful mode-locked lasers at about 1 µm wavelength, developed in the team of Dr. Oleg Pronin over the past years, with the non-oxide langasite crystals which were utilized for frequency down-conversion to the mid-IR.

The innovative experimental design allowed to exceed the power efficiency of the frequency down-conversion process by more than a factor 25 in comparison to comparable prior work and led to broadband mid-IR radiation that supports pulse durations of only a few optical cycles.

Publication: M. Seidel, G. Arisholm, O. Pronin, and F. Krausz, “450 mW femtosecond mid-IR source at 8.5 µm wavelength” in CLEO: Science and Innovations, (Optical Society of America, 2016), p. STu3I.6

Contact:

Marcus Seidel
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 289 -14186
E-mail: marcus.seidel@physik.uni-muenchen.de

Prof. Dr. Ferenc Krausz
Chair of Experimental Physics,
Ludwig-Maximilians-Universität Munich
Laboratory for Attosecond Physics
Direktor at the Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -600
Fax: +49 (0)89 / 32 905 -649
E-mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Awards Funding:

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Photography: An unusual and surprising picture of science
04.05.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>