Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Max Planck Institute of Quantum Optics wins “Otto-Hahn-Triple”

17.06.2015

Elisabeth Bothschafter, Andreas Reiserer, and Michael Krüger are excelled with the Otto Hahn Medal by the Max Planck Society.

This year, the Max Planck Society has awarded the Otto Hahn Medal 2014 to three young scientists who have completed their doctoral thesis at the Max Planck Institute of Quantum Optics: Elisabeth Bothschafter, Andreas Reiserer, and Michael Krüger.

Since 1978 the Max Planck Society has presented this honour annually to around 30 junior scientists for ground-breaking scientific achievements connected to their doctoral thesis. The award is intended to encourage highly talented people to decide for a career in fundamental research. In addition, Andreas Reiserer is going to receive the Otto Hahn Award that each section of the MPG annually donates to one scientist only.

Dr. Elisabeth Bothschafter receives the Otto Hahn Medal for “Investigations of the non-linear interaction of light and matter in dielectric materials on the attosecond time-scale”.

Elisabeth Bothschafter studied physics at the University of Stuttgart and engineering at the Ecole Centrale Paris in the framework of a double diploma program which she completed in 2009. Her diploma thesis was carried out in the Attosecond Physics Division of Prof. Ferenc Krausz at the MPQ. In 2010 she became a member of the International Max Planck Research School of Advanced Photon Science (IMPRS-APS) and continued as a doctoral student in the same division.

From 2012 to 2014 Elisabeth Bothschafter was Vice-President of the Student Chapter Munich of the Optical Society of America (OSA). In May 2014 she completed her thesis “Femtosecond and Attosecond Electron Dynamics in Semiconductors and Dielectrics” under the supervision of Prof. Reinhard Kienberger and received her doctoral degree from the Technische Universität München.

Elisabeth Bothschafter investigated the interaction of femtosecond light-pulses with electrons bound in silicon-dioxide whereby she discovered entirely new processes: she was able to demonstrate that – even at very high fields – the material would almost instantaneously react to the oscillations of light waves, but return to its former state after the laser pulse had passed. This result is of high importance concerning possible technical applications, for example optical transistors. Now she has a postdoc position in the group of Dr. Urs Staub at the “Swiss Light Source” at the Paul-Scherrer-Institut (Villigen, Switzerland).

Dr. Andreas Reiserer is awarded the Otto Hahn Medal for the “Nondestructive detection of an optical photon and the realization of a quantum gate between an atom and a photon”.

Andreas Reiserer studied physics at the University of Würzburg where he received his “Master of Science” in 2009. During that time he had a stipend of the “Studienstiftung des Deutschen Volkes”. His doctoral thesis made him come to Garching (near Munich) where he became a member of the Quantum Dynamics Division of Prof. Gerhard Rempe at MPQ.

In his doctoral thesis “A controlled phase gate between a single atom and an optical photon” he was working on several groundbreaking experiments in the field of quantum information science. Here, a single atom trapped inside a high-finesse optical cavity detects a single optical photon without destroying it. Using the photon as a “flying” quantum bit and the atom as a “stationary” one Andreas Reiserer was able to realize a quantum logic gate between light and matter. These experiments are of fundamental importance for the implementation of a future quantum internet.

Having received his doctoral degree at the Technische Universität München in 2014, Andreas Reiserer became a postdoctoral researcher in the “Quantum Transport” group of Prof. Dr. Ronald Hanson, Kavli Institute of Nanoscience and Technical University of Delft (Netherlands). The young scientist will also receive the Otto Hahn Award which implies the opportunity to become leader of a research group at a Max Planck Institute after having stayed abroad.

Nominated by the Max Planck Institute for the Science of Light, Dr. Michael Krüger receives the Otto Hahn Medal for “Investigations of ultrafast electronic processes on nanostructures with phase-controlled laser pulses”.

Michael Krüger studied physics at the Ludwig-Maximilians-Universität München where he received his diploma in 2009. Both his diploma thesis and his doctoral thesis were carried out in the research group “Ultrafast Quantum Optics” of Dr. Peter Hommelhoff at the MPQ.

In his thesis “Attosecond physics in strong-field photoemission from metal nanotips”, Michael Krüger observed pivotal processes of attosecond and strong-field science in solids. In the optical field of an intense laser pulse an electron is first driven away from its parent atom, but eventually returns to it within an optical half cycle. At the point of recollision, the energy the electron had gained can be radiated away, or the electron can just scatter elastically. The occurring of the latter process at a metal nano-tip has been demonstrated for the first time by Michael Krüger. That way the young scientist proved that the electrical field of the laser pulses allows controlling electrons at a nanoscale solid state system. This opens the door to extremely fast light-controlled electronics.

Having received his doctoral degree from the Ludwig-Maximilians-Universität München in October 2013, Michael Krüger followed his advisor Peter Hommelhoff, who had accepted a professorship at the Universität Erlangen-Nürnberg in 2012. Since June 2014 he has been a postdoctoral researcher in the group of Prof. Nirit Dudovich at the Weizmann Institute of Science in Rehovot, Israel. Last year he has received the Koshland Prize for outstanding postdoctoral fellows.

Elisabeth Bothschafter, Andreas Reiserer, and Michael Krüger will be presented with the Otto Hahn Medal – which is endowed with prize money of 7500 Euro – on the occasion of the General Meeting of the Max Planck Society in Berlin on June 17th, 2015. Olivia Meyer-Streng

Contact:

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>