Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Max Planck Institute of Quantum Optics wins “Otto-Hahn-Triple”

17.06.2015

Elisabeth Bothschafter, Andreas Reiserer, and Michael Krüger are excelled with the Otto Hahn Medal by the Max Planck Society.

This year, the Max Planck Society has awarded the Otto Hahn Medal 2014 to three young scientists who have completed their doctoral thesis at the Max Planck Institute of Quantum Optics: Elisabeth Bothschafter, Andreas Reiserer, and Michael Krüger.

Since 1978 the Max Planck Society has presented this honour annually to around 30 junior scientists for ground-breaking scientific achievements connected to their doctoral thesis. The award is intended to encourage highly talented people to decide for a career in fundamental research. In addition, Andreas Reiserer is going to receive the Otto Hahn Award that each section of the MPG annually donates to one scientist only.

Dr. Elisabeth Bothschafter receives the Otto Hahn Medal for “Investigations of the non-linear interaction of light and matter in dielectric materials on the attosecond time-scale”.

Elisabeth Bothschafter studied physics at the University of Stuttgart and engineering at the Ecole Centrale Paris in the framework of a double diploma program which she completed in 2009. Her diploma thesis was carried out in the Attosecond Physics Division of Prof. Ferenc Krausz at the MPQ. In 2010 she became a member of the International Max Planck Research School of Advanced Photon Science (IMPRS-APS) and continued as a doctoral student in the same division.

From 2012 to 2014 Elisabeth Bothschafter was Vice-President of the Student Chapter Munich of the Optical Society of America (OSA). In May 2014 she completed her thesis “Femtosecond and Attosecond Electron Dynamics in Semiconductors and Dielectrics” under the supervision of Prof. Reinhard Kienberger and received her doctoral degree from the Technische Universität München.

Elisabeth Bothschafter investigated the interaction of femtosecond light-pulses with electrons bound in silicon-dioxide whereby she discovered entirely new processes: she was able to demonstrate that – even at very high fields – the material would almost instantaneously react to the oscillations of light waves, but return to its former state after the laser pulse had passed. This result is of high importance concerning possible technical applications, for example optical transistors. Now she has a postdoc position in the group of Dr. Urs Staub at the “Swiss Light Source” at the Paul-Scherrer-Institut (Villigen, Switzerland).

Dr. Andreas Reiserer is awarded the Otto Hahn Medal for the “Nondestructive detection of an optical photon and the realization of a quantum gate between an atom and a photon”.

Andreas Reiserer studied physics at the University of Würzburg where he received his “Master of Science” in 2009. During that time he had a stipend of the “Studienstiftung des Deutschen Volkes”. His doctoral thesis made him come to Garching (near Munich) where he became a member of the Quantum Dynamics Division of Prof. Gerhard Rempe at MPQ.

In his doctoral thesis “A controlled phase gate between a single atom and an optical photon” he was working on several groundbreaking experiments in the field of quantum information science. Here, a single atom trapped inside a high-finesse optical cavity detects a single optical photon without destroying it. Using the photon as a “flying” quantum bit and the atom as a “stationary” one Andreas Reiserer was able to realize a quantum logic gate between light and matter. These experiments are of fundamental importance for the implementation of a future quantum internet.

Having received his doctoral degree at the Technische Universität München in 2014, Andreas Reiserer became a postdoctoral researcher in the “Quantum Transport” group of Prof. Dr. Ronald Hanson, Kavli Institute of Nanoscience and Technical University of Delft (Netherlands). The young scientist will also receive the Otto Hahn Award which implies the opportunity to become leader of a research group at a Max Planck Institute after having stayed abroad.

Nominated by the Max Planck Institute for the Science of Light, Dr. Michael Krüger receives the Otto Hahn Medal for “Investigations of ultrafast electronic processes on nanostructures with phase-controlled laser pulses”.

Michael Krüger studied physics at the Ludwig-Maximilians-Universität München where he received his diploma in 2009. Both his diploma thesis and his doctoral thesis were carried out in the research group “Ultrafast Quantum Optics” of Dr. Peter Hommelhoff at the MPQ.

In his thesis “Attosecond physics in strong-field photoemission from metal nanotips”, Michael Krüger observed pivotal processes of attosecond and strong-field science in solids. In the optical field of an intense laser pulse an electron is first driven away from its parent atom, but eventually returns to it within an optical half cycle. At the point of recollision, the energy the electron had gained can be radiated away, or the electron can just scatter elastically. The occurring of the latter process at a metal nano-tip has been demonstrated for the first time by Michael Krüger. That way the young scientist proved that the electrical field of the laser pulses allows controlling electrons at a nanoscale solid state system. This opens the door to extremely fast light-controlled electronics.

Having received his doctoral degree from the Ludwig-Maximilians-Universität München in October 2013, Michael Krüger followed his advisor Peter Hommelhoff, who had accepted a professorship at the Universität Erlangen-Nürnberg in 2012. Since June 2014 he has been a postdoctoral researcher in the group of Prof. Nirit Dudovich at the Weizmann Institute of Science in Rehovot, Israel. Last year he has received the Koshland Prize for outstanding postdoctoral fellows.

Elisabeth Bothschafter, Andreas Reiserer, and Michael Krüger will be presented with the Otto Hahn Medal – which is endowed with prize money of 7500 Euro – on the occasion of the General Meeting of the Max Planck Society in Berlin on June 17th, 2015. Olivia Meyer-Streng

Contact:

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Awards Funding:

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>