Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The key to chemical transformations


Chemist Xile Hu is the winner of the National Latsis Prize for 2017. Hu, a professor at the École Polytechnique Fédérale de Lausanne, was recognised for his outstanding scientific career and his original contributions to the fundamental understanding of catalysis.

Catalysis is a field of chemistry that studies materials that can accelerate or bring about chemical transformations. Hu has distinguished himself through his pioneering work on the production of solar fuels and the synthesis of high-added-value molecules. The prize is awarded each year by the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation.

Chemist Xile Hu is the winner of the National Latsis Prize for 2017.

© SNSF, photographer Valérie Chételat

Novel approach

Hu, who was born in China and came to Switzerland in 2007, founded the Laboratory of Inorganic Synthesis and Catalysis at the École Polytechnique Fédérale de Lausanne (EPFL). He is known for his innovative approach, which consists of combining the concepts and methods associated with three different types of catalysis (homogeneous, heterogeneous and enzymatic), which traditionally have remained separate. This approach has led to unprecedented understanding of fundamental catalysis and enabled the discovery of new catalysts with properties superior to those of previous materials.

... more about:
»EPFL »Polytechnique »SNF »catalysts »enzymatic »fuels »materials

"I decided not to worry too much about barriers between the types, as long as they work and give interesting results", says Hu, a professor at the EPFL's Institute of Chemical Sciences and Engineering. "I always try to introduce something new or unpredictable to my research, but that's not necessarily obvious. Scientists like things to happen logically, so when you suggest something unfamiliar or that's believed to be impossible, you may sound a little crazy."

Accordingly, the 39-year-old Hu sought to model enzymes (enzymatic catalysis) as part of his research on solar fuels (heterogeneous catalysis). "It didn't work, but we discovered a very good, new type of catalyst", explains Hu. Half of his research team is working on solar fuels.

"We use solar energy to split water into oxygen and hydrogen, because hydrogen is an excellent source of energy", says Hu, who received his undergraduate degree in chemistry from Peking University. "We would like to use catalytic materials to store this energy in the form of chemical products." Hu estimates that such a technology could become reality in 15 to 20 years.

At the heart of chemistry

Research on high-value-added molecules for chemical products is Hu's other major area of research. "We are focusing on catalysis based on elements that are abundant on Earth, like iron, copper and nickel", says Hu, who did his postdoctoral research at the California Institute of Technology. "Until now, the chemical industry has mostly been working with precious metals like platinum, but these are rare and expensive. Abundant Earth elements are cheaper and have good potential, seeing as how they have been very little studied from that vantage." These new molecules could later find use in the pharmaceutical, food-processing or even cosmetic industries.

Hu has amassed a remarkable number of publications for someone his age. "Scientific articles are really collaborative efforts", he says. "I have been fortunate in finding students who are motivated and excited by the idea of investigating areas that are still relatively undiscovered."

"I find it fascinating to be able to create new materials and to work in a field that has an impact on both nature and the living world", says Hu. "Catalysis is at the heart of chemistry, but it goes unnoticed because it is so much a part of everyday life. Yet today it is more important than ever, especially for dealing with the energy challenges that humanity faces."

Global chemist

Xile Hu was born in Putian, in south-eastern China, on 7 August 1978. He is a professor at the Institute of Chemical Sciences and Engineering at the École Polytechnique Fédérale de Lausanne (EPFL). After receiving his bachelor's degree in chemistry at Peking University in 2000, he left for the University of California, San Diego, where he received his master's degree in 2002 and his PhD in 2004. He then did postdoctoral research at the California Institute of Technology in Pasadena from 2005 to 2007. That same year, he accepted a position at EPFL, where he went on to found the Laboratory of Inorganic Synthesis and Catalysis. He has received numerous prizes and distinctions, including the Werner Prize from the Swiss Chemical Society.
Hu says he is "sometimes embarrassed that I don't fit the cliché of the scientist who spends all his free time in the laboratory". He enjoys skiing and hiking in the mountains. Hu is married to a Swiss acupuncturist, with whom he has a three-month-old daughter.

Little noticed, but vital

Catalysis refers to the use of a substance to accelerate chemical transformations, or to bring about transformations that would not have occurred naturally. "Nearly 90% of chemical processes rely on catalysis at some point", says Xile Hu, professor of chemistry at the École Polytechnique Fédérale de Lausanne (EPFL) and winner of the National Latsis Prize for 2017. "We would like them to enjoy even more widespread use, because a good catalyst makes it possible to avoid needless steps, in terms of cost as well as of time and energy." Although catalysis is mainly employed in the chemical industry, it is equally important for humans and in nature. "Plants use biological catalysts for photosynthesis, whereas humans rely on enzymatic catalysis to metabolise the oxygen that they breathe", says Hu. Moreover, anything to do with fermentation, such as the making of beer, yogurt or bread, depends on catalysis. Finally, the best-known catalysts are those used in cars. These catalysts transform engine emissions into non-toxic components that are then released into the air.

National Latsis Prize

Since 1983, the National Latsis Prize has been conferred annually by the Swiss National Science Foundation (SNSF) on behalf of the International Latsis Foundation, a non-profit organisation founded in 1975 and based in Geneva. It is awarded for outstanding scientific work by a Switzerland-based researcher under 40.
With CHF 100,000 in prize money, the National Latsis Prize is one of Switzerland's most prestigous scientific awards. There are also four University Latsis Prizes, each worth CHF 25,000, awarded by the Universities of Geneva and St, Gallen, and the Swiss Federal Institute of Technology in Zurich (ETHZ) and Lausanne (EPFL).

The award ceremony for the 34th National Latsis Prize will be held at Berne Town Hall on 11 January 2018. Journalists can register by sending an email to:


Prof. Xile Hu
École polytechnique fédérale de Lausanne
BCH 3305 (Bldg. BCH)
CH-1015 Lausanne
Tel.: +41 21 693 97 81

Weitere Informationen: 'Video and download pictures of Xile Hu for editorial use'

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: EPFL Polytechnique SNF catalysts enzymatic fuels materials

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>