Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel EU-funded collaborative proteomics project to bring proteomics to clinical application

22.12.2015

Novel proteomic technologies that are so robust and powerful that they can be used in every biological laboratory and in every clinic are expected as results of the currently starting research consortium MSmed. The European Commission is co-funding the project with 3.7 Million Euros for four years starting December 1, 2015 within the research line “Future and Emerging Technologies” under the Horizon 2020 Programme. MSmed will automate workflows in mass spectrometric analysis for proteomics research to prepare them for high-throughput clinical application.

Proteins are the major functional actors within cells and exert most of the cells’ functions. Over the past decade the analysis of the protein inventory of cells and tissues, the „proteome“, has made tremendous progress showing definite promise of mass spectrometry technology in the life sciences.


The MSMed team. Clockwise: Matthias Mann, Jesper Olsen, Albert Heck, Alexander Makarov und Jürgen Cox (middle).

© MPI of Biochemistry

To date proteome analysis is still a specialist technology and has not reached the robustness and availability for large-scale biomedical and clinical applications. In that respect it clearly lags behind genomic technologies that are, however, not applicable to protein based questions.

The MSmed project was initiated to tackle this issue. The vision of project coordinator Matthias Mann is “…to introduce proteome analysis by mass spectrometry as automated routine tool into the clinics”. Complementing current genetic methods with direct proteome analysis would allow measuring actual medical parameters as reflected in the patient’s proteome rather than solely genetic disposition.

Such a paradigm changing approach could transform personalized medicine, revolutionizing medical diagnosis and the assessment of efficacy of medical intervention on an individual basis.

To bring this vision into reality, a team was built around leaders in the proteomics field with a history of successful collaboration. They will bring in a broad range of experiences and expertise to master the various challenges lying ahead. These challenges include the development of novel instrumentation with drastically increased performance, the automation of sample preparation and analysis, the adaptation of analysis protocols to the characteristics of clinical samples, and the development of comprehensive software for extensive in-depth analysis of the large amounts of data obtained.

When successful, MSmed will establish mass spectrometry based proteomics in systems medicine, making all workflows and mass spectrometry platforms available to the community. These workflows will be used as the basis of myriad applications in biomedicine, even in the clinic. This in turn will lead to a new eco-system around improved diagnosis, elucidations of disease mechanisms and drug action.

The MSmed team
The coordinating Mann group (Novo Nordisk Foundation Center for Protein Research, University of Copenhagen and Max Planck Institute of Biochemistry, Martinsried), the Olsen group (Novo Nordisk Foundation Center for Protein Research, University of Copenhagen) , the Cox group (Max Planck Institute of Biochemistry, Martinsried), the Heck group (Utrecht University) and Makarov from the industrial partner Thermo Fisher Scientific, are all leaders in the field and have a longstanding collaboration concerning the improvement of instrumentation in mass spectrometry, with the aim to make it accessible to all researchers. One example is the earlier EU-funded project PROSPECTS, which was also coordinated by Matthias Mann, where Mann, Olsen, Cox and Makarov jointly invented novel technology for in depth quantitative proteomics and the EU-funded project PRIME-XS, coordinated by Albert Heck, wherein amongst others Mann and Olsen participated and jointly provided access to their facilities to researchers in Europe and performed joint research projects.

The coordinating center in Copenhagen brings in expertise in clinical approaches and a network of clinical collaborators. The Heck group (University Utrecht) is a key partner in technology development for novel identification methods to be used in the analysis of modified proteins. The Cox group (Max Planck Institute of Biochemistry, Martinsried) complements the lab expertise with high-end bioinformatics. Together with the Mann group they have developed the most successful and industry standard MaxQuant platform for proteomics research worldwide. Makarov, being the inventor of the leading mass analyser and research director at Thermo Fisher complements the team, and has long standing relationship with all the academic partners. These earlier achievements lend credibility to the future success of the MSmed project.

Contact:
Dr. Anne Katrin Werenskiold
EU Office
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2601
E-Mail:kwerensk@biochem.mpg.de
www.biochem.mpg.de

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - homepage Max Planck Institute of Biochemistry

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Awards Funding:

nachricht Scientist at Kiel University receive EU funding to develop new implantats
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>