Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel EU-funded collaborative proteomics project to bring proteomics to clinical application

22.12.2015

Novel proteomic technologies that are so robust and powerful that they can be used in every biological laboratory and in every clinic are expected as results of the currently starting research consortium MSmed. The European Commission is co-funding the project with 3.7 Million Euros for four years starting December 1, 2015 within the research line “Future and Emerging Technologies” under the Horizon 2020 Programme. MSmed will automate workflows in mass spectrometric analysis for proteomics research to prepare them for high-throughput clinical application.

Proteins are the major functional actors within cells and exert most of the cells’ functions. Over the past decade the analysis of the protein inventory of cells and tissues, the „proteome“, has made tremendous progress showing definite promise of mass spectrometry technology in the life sciences.


The MSMed team. Clockwise: Matthias Mann, Jesper Olsen, Albert Heck, Alexander Makarov und Jürgen Cox (middle).

© MPI of Biochemistry

To date proteome analysis is still a specialist technology and has not reached the robustness and availability for large-scale biomedical and clinical applications. In that respect it clearly lags behind genomic technologies that are, however, not applicable to protein based questions.

The MSmed project was initiated to tackle this issue. The vision of project coordinator Matthias Mann is “…to introduce proteome analysis by mass spectrometry as automated routine tool into the clinics”. Complementing current genetic methods with direct proteome analysis would allow measuring actual medical parameters as reflected in the patient’s proteome rather than solely genetic disposition.

Such a paradigm changing approach could transform personalized medicine, revolutionizing medical diagnosis and the assessment of efficacy of medical intervention on an individual basis.

To bring this vision into reality, a team was built around leaders in the proteomics field with a history of successful collaboration. They will bring in a broad range of experiences and expertise to master the various challenges lying ahead. These challenges include the development of novel instrumentation with drastically increased performance, the automation of sample preparation and analysis, the adaptation of analysis protocols to the characteristics of clinical samples, and the development of comprehensive software for extensive in-depth analysis of the large amounts of data obtained.

When successful, MSmed will establish mass spectrometry based proteomics in systems medicine, making all workflows and mass spectrometry platforms available to the community. These workflows will be used as the basis of myriad applications in biomedicine, even in the clinic. This in turn will lead to a new eco-system around improved diagnosis, elucidations of disease mechanisms and drug action.

The MSmed team
The coordinating Mann group (Novo Nordisk Foundation Center for Protein Research, University of Copenhagen and Max Planck Institute of Biochemistry, Martinsried), the Olsen group (Novo Nordisk Foundation Center for Protein Research, University of Copenhagen) , the Cox group (Max Planck Institute of Biochemistry, Martinsried), the Heck group (Utrecht University) and Makarov from the industrial partner Thermo Fisher Scientific, are all leaders in the field and have a longstanding collaboration concerning the improvement of instrumentation in mass spectrometry, with the aim to make it accessible to all researchers. One example is the earlier EU-funded project PROSPECTS, which was also coordinated by Matthias Mann, where Mann, Olsen, Cox and Makarov jointly invented novel technology for in depth quantitative proteomics and the EU-funded project PRIME-XS, coordinated by Albert Heck, wherein amongst others Mann and Olsen participated and jointly provided access to their facilities to researchers in Europe and performed joint research projects.

The coordinating center in Copenhagen brings in expertise in clinical approaches and a network of clinical collaborators. The Heck group (University Utrecht) is a key partner in technology development for novel identification methods to be used in the analysis of modified proteins. The Cox group (Max Planck Institute of Biochemistry, Martinsried) complements the lab expertise with high-end bioinformatics. Together with the Mann group they have developed the most successful and industry standard MaxQuant platform for proteomics research worldwide. Makarov, being the inventor of the leading mass analyser and research director at Thermo Fisher complements the team, and has long standing relationship with all the academic partners. These earlier achievements lend credibility to the future success of the MSmed project.

Contact:
Dr. Anne Katrin Werenskiold
EU Office
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2601
E-Mail:kwerensk@biochem.mpg.de
www.biochem.mpg.de

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - homepage Max Planck Institute of Biochemistry

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>