Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tools, Big Effect

30.03.2016

A team coordinated by a Freiburg chemist receives 1,050,000 USD to develop an approach for studying a biopolymer

Prof. Dr. Henning Jessen has received 1,050,000 US Dollars in funding from the International Human Frontier Science Program Organization (HFSPO) for a project that combines methods from synthetic organic chemistry, technologies for releasing active substances, and approaches from cell and animal biology with the goal of developing effective tools for understanding the biopolymer polyphosphate (polyP).


Prof. Dr. Henning Jessen

Credit: private

The Freiburg chemist will coordinate an international research group including scientists from Stanford University, USA, and the Center for DNA Fingerprinting and Diagnostics in Hyderabad, India. The team will spend the next three years attempting to decipher the mechanisms of polyP in mammals. Special emphasis will be placed on elucidating the function of polyP in blood clotting. The findings could also enable the development of novel antibiotics.

The biopolymer polyP is a chemical substance consisting of a long chain of phosphate groups that serves important functions: In bacteria, for instance, it is involved in stress response, biofilm formation, and antibiotic resistance. It could very well also be responsible for critical processes in mammals.

Studies suggest that it plays a role in blood clotting and in the transmission of neuronal signals. Researchers still lack significant information to confirm these functions, however, because the enzyme that synthesizes polyP in human cells has not yet been identified. Moreover, it is not known how it is transported in cells.

In cooperation with Prof. Dr. Paul Wender from the USA and Dr. Rashna Bhandari from India, Jessen aims to develop new technologies for making, modifying, analyzing, and transporting polyP – first in a test tube and later in living cells. In this way, the team hopes to make a fundamental contribution to further research on the biopolymer in mammals.

The international organization HFSPO funds international cooperation and novel research approaches. Jessen’s team prevailed against more than 800 proposals submitted by applicants from 64 countries. He serves as professor of bioorganic chemistry at the University of Freiburg. His research interests revolve around the chemistry of biologically important phosphates, especially the function of special highly phosphorylated cellular signaling molecules.

Henning Jessen’s research group at the University of Freiburg
http://www.jessen-lab.uni-freiburg.de

Contact:
Prof. Dr. Henning Jessen
Institute of Organic Chemistry
University of Freiburg
Phone: +49 (0)761/203-6073
E-Mail: henning.jessen@oc.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm-en/personalia-en/jessen-biopolymer

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>