Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tools, Big Effect

30.03.2016

A team coordinated by a Freiburg chemist receives 1,050,000 USD to develop an approach for studying a biopolymer

Prof. Dr. Henning Jessen has received 1,050,000 US Dollars in funding from the International Human Frontier Science Program Organization (HFSPO) for a project that combines methods from synthetic organic chemistry, technologies for releasing active substances, and approaches from cell and animal biology with the goal of developing effective tools for understanding the biopolymer polyphosphate (polyP).


Prof. Dr. Henning Jessen

Credit: private

The Freiburg chemist will coordinate an international research group including scientists from Stanford University, USA, and the Center for DNA Fingerprinting and Diagnostics in Hyderabad, India. The team will spend the next three years attempting to decipher the mechanisms of polyP in mammals. Special emphasis will be placed on elucidating the function of polyP in blood clotting. The findings could also enable the development of novel antibiotics.

The biopolymer polyP is a chemical substance consisting of a long chain of phosphate groups that serves important functions: In bacteria, for instance, it is involved in stress response, biofilm formation, and antibiotic resistance. It could very well also be responsible for critical processes in mammals.

Studies suggest that it plays a role in blood clotting and in the transmission of neuronal signals. Researchers still lack significant information to confirm these functions, however, because the enzyme that synthesizes polyP in human cells has not yet been identified. Moreover, it is not known how it is transported in cells.

In cooperation with Prof. Dr. Paul Wender from the USA and Dr. Rashna Bhandari from India, Jessen aims to develop new technologies for making, modifying, analyzing, and transporting polyP – first in a test tube and later in living cells. In this way, the team hopes to make a fundamental contribution to further research on the biopolymer in mammals.

The international organization HFSPO funds international cooperation and novel research approaches. Jessen’s team prevailed against more than 800 proposals submitted by applicants from 64 countries. He serves as professor of bioorganic chemistry at the University of Freiburg. His research interests revolve around the chemistry of biologically important phosphates, especially the function of special highly phosphorylated cellular signaling molecules.

Henning Jessen’s research group at the University of Freiburg
http://www.jessen-lab.uni-freiburg.de

Contact:
Prof. Dr. Henning Jessen
Institute of Organic Chemistry
University of Freiburg
Phone: +49 (0)761/203-6073
E-Mail: henning.jessen@oc.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm-en/personalia-en/jessen-biopolymer

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>