Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martin Jinek wins Vallee Young Investigator Award

06.08.2015

Martin Jinek, a professor at the University of Zurich’s Department of Biochemistry, was presented with the 2015 Vallee Young Investigator Award. The international prize is awarded to young researchers for outstanding achievements in biomedicine and carries USD 250,000 in prize money.

Professor Martin Jinek’s main research interest is a sophisticated bacterial mechanism known as the CRISPR system that has recently been developed into a powerful genetic engineering technology.


Martin Jinek was presented with the 2015 Vallee Young Investigator Award for his successful research in biomedicine.

UZH

His latest research work revealed precisely how the system works and which components are involved, right down to atomic level. These findings open up new possibilities for a targeted application in gene therapy to cure hereditary diseases.

35-year-old Martin Jinek studied at the University of Cambridge, and obtained a doctorate in Heidelberg, Germany. Following several years of postdoctoral research work in Berkeley, California, he joined the Department of Biochemistry at the University of Zurich two years ago.

Professor Jinek’s successful research has already been recognized with publications in renowned journals and various prizes. In 2013, for instance, he received a prestigious Starting Grant from the European Research Council (ERC), as well as the 2014 John Kendrew Award from the European Molecular Biology Laboratory (EMBL) in Heidelberg. In addition, Professor Jinek was awarded this year’s Friedrich Miescher Prize – one of Switzerland’s highest accolades for young investigators.

Vallee Young Investigator Award

Every year, the Vallee Foundation, Boston, presents the Vallee Young Investigator Award to young scientists for outstanding research work in biomedicine. The key factors for the prize include the originality, innovation, quality and independence of the research. The USD 250,000 in prize money is meant to be used for basic research.

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2015/martin-jinek-mit-vallee-young-investig...

Evelyne Brönnimann | Universität Zürich

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>