Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lung Research - EU Horizon 2020 funding to predict nanotoxicity


Scientists at the Helmholtz Zentrum München have received more than one million euros in the framework of the European Horizon 2020 Initiative. Dr. Tobias Stöger and Dr. Otmar Schmid from the Institute of Lung Biology and Disease and the Comprehensive Pneumology Center (CPC) will be using the funds to develop new tests to assess risks posed by nanomaterials in the airways. This could contribute to reducing the need for complex toxicity tests.

Nanoparticles are extremely small particles that can penetrate into remote parts of the body. While researchers are investigating various strategies for harvesting the potential of nanoparticles for medical applications, they could also pose inherent health risks*. Currently the hazard assessment of nanomaterials necessitates a complex and laborious procedure. In addition to complete material characterization, controlled exposure studies are needed for each nanomaterial in order to guarantee the toxicological safety.

Dr. Tobias Stöger and Dr. Otmar Schmid

Source: Helmholtz Zentrum München

As a part of the EU SmartNanoTox project, which has now been funded with a total of eight million euros, eleven European research partners, including the Helmholtz Zentrum München, want to develop a new concept for the toxicological assessment of nanomaterials.

Reference database for hazardous substances

Biologist Tobias Stöger and physicist Otmar Schmid, both research group heads at the Institute of Lung Biology and Disease, hope that the use of modern methods will help to advance the assessment procedure. "We hope to make more reliable nanotoxicity predictions by using modern approaches involving systems biology, computer modelling, and appropriate statistical methods," states Stöger.

The lung experts are concentrating primarily on the respiratory tract. The approach involves defining a representative selection of toxic nanomaterials and conducting an in-depth examination of their structure and the various molecular modes of action that lead to their toxicity. These data are then digitalized and transferred to a reference database for new nanomaterials. Economical tests that are easy to conduct should then make it possible to assess the toxicological potential of these new nanomaterials by comparing the test results s with what is already known from the database. "This should make it possible to predict whether or not a newly developed nanomaterial poses a health risk," Otmar Schmid says.

Further information:

* Review: Schmid, O. and Stoeger, T. (2016). Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science, DOI:10.1016/j.jaerosci.2015.12.006

The project is coordinated by Dr. Vladimir Lobaskin from University College Dublin. For more information and a list of all partners visit

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität with its University Hospital and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is one of five sites of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL).

The German Center for Lung Research (DZL) pools German expertise in the field of pulmonology research and clinical pulmonology. The association’s head office is in Giessen. The aim of the DZL is to find answers to open questions in research into lung diseases by adopting an innovative, integrated approach and thus to make a sizeable contribution to improving the prevention, diagnosis and individualized treatment of lung disease and to ensure optimum patient care.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail:

Scientific contact at Helmholtz Zentrum München:
Dr. Tobias Stöger, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center Ingolstädter Landstraße 1, 85764 Neuherberg- Tel. +49 89 3187 3104 - E-mail:

Dr. Otmar Schmid, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Ingolstädter Landstraße 1, 85764 Neuherberg- Tel. +49 89 3187 2557 - E-mail:

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: EU Environmental Health Pneumology diseases lung lung diseases nanomaterials

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>