Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking into the retina—Philipp Berens receives Bernstein Award 2015

15.09.2015

Computational biologist Dr. Philipp Berens has been awarded one of the most attractive junior research prizes worldwide. Using computer models, he investigates the role and structure of the different cell types in the retina.

The Bernstein Award will be presented by Dr. Matthias Kölbel from the Federal Ministry of Education and Research (BMBF) on September 15, 2015 during the Bernstein Conference in Heidelberg.

The award is endowed with up to € 1.25 million and enables to build up an independent research group at a German research institution. Berens plans to establish his research group at the Bernstein Center for Computational Neuroscience at Eberhard Karls University Tübingen.

In our retina, there are numerous types of a certain cell class, the so-called bipolar cells. To date, 14 different types have been identified in the mouse. How does this diversity emerge—do the cells have different roles in visual processing?

These are the questions Philipp Berens deals with. “By means of computer models, I try to understand the functional and biophysical properties of these cells,” Berens explains. “The models build on physiological and anatomical data from experimental research.” Computational modelling allows him to observe the cell types in different settings and to draw conclusions from their behavior.

In previous collaborations with experimental researchers, Berens has studied another cell type in the retina: the ganglion cells. These neurons receive their inputs from bipolar cells and send the output of the retina as nerve impulses to the brain.

Using statistical methods, Berens has identified many different types of ganglion cells. “Until recently, the existence of only a handful of ganglion cell types had been assumed—however, we found 30 to 40 distinct types. They all fulfill a different function and project their own image version to the brain,” Berens says.

Analyzing bipolar cells will enable the neuroscientist to understand how the wide variety of ganglion cells is created. At the same time, Berens pursues medical applications with his research. In a second step, he plans to investigate the impact of degenerative retinal diseases on various cell types.

“Do all bipolar cell types fail simultaneously or do some survive longer than others? And may the results from these findings serve as a diagnostic marker, which allows us to analyze the progress of the disease in a patient?” Berens asks.

By means of the Bernstein Award, Berens plans to establish a research group at the University of Tübingen. Here, Berens is already heading a project at the Bernstein Center and the Werner Reichardt Center for Integrative Neuroscience – CIN (Cluster of Excellence at the university) and has several collaborations.

He is looking forward to the forthcoming research projects: “The challenge in trying to understand the nervous system is to find a part that is sufficiently complex to facilitate exciting things to happen—and that is at the same time simple enough to allow its understanding. The retina is an ideal example of this.”

Dr. Philipp Berens is born in 1981 and has studied bioinformatics (diploma) and philosophy (BA) at the University of Tübingen. From 2008 to 2013, he pursued his PhD in the labs of Professor Dr. Matthias Bethge at the Max Planck Institute for Biological Cybernetics in Tübingen and Professor Dr. Andreas Tolias at Baylor College of Medicine in Houston (USA). For his doctoral thesis on visual population coding, he received the highest possible grade summa cum laude.

From mid 2012 to the end of 2014, he was a postdoctoral research associate in the group of Professor Dr. Matthias Bethge at the Bernstein Center Tübingen. Since November 2014, Berens is heading a project in the labs of Professor Dr. Matthias Bethge and Professor Dr. Thomas Euler at the Bernstein Center Tübingen and the University Hospital of Tübingen. He continuous to be a visiting scholar in the lab of Professor Dr. Andreas Tolias at Baylor College of Medicine in Houston (USA). For the clear description of his research, Berens won the Klaus Tschira Preis für verständliche Wissenschaft in 2013. He has twice been presented with a teaching award for his lectures at the Tübingen Graduate Training Centre of Neuroscience.

The Bernstein Award has been conferred for the tenth time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Weitere Informationen erteilt Ihnen gerne:

Dr. Philipp Berens
Bernstein Center for Computational Neuroscience Tübingen
Eberhard-Karls-Universität Tübingen
Otfried-Müller-Str. 25
72076 Tübingen
Tel: +49 (0)7071 29 88910
+49 (0)7071 29 89018 (Sekretary – only mornings)
E-Mail: philipp.berens@uni-tuebingen.de

Weitere Informationen:

https://philippberens.wordpress.com website Philipp Berens
http://www.bernstein-conference.de Bernstein Conference
http://www.bccn-tuebingen.de Bernstein Center Tübingen
http://www.nncn.de National Bernstein Network Computational Neuroscience

Dr. Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>