Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Looking into the retina—Philipp Berens receives Bernstein Award 2015


Computational biologist Dr. Philipp Berens has been awarded one of the most attractive junior research prizes worldwide. Using computer models, he investigates the role and structure of the different cell types in the retina.

The Bernstein Award will be presented by Dr. Matthias Kölbel from the Federal Ministry of Education and Research (BMBF) on September 15, 2015 during the Bernstein Conference in Heidelberg.

The award is endowed with up to € 1.25 million and enables to build up an independent research group at a German research institution. Berens plans to establish his research group at the Bernstein Center for Computational Neuroscience at Eberhard Karls University Tübingen.

In our retina, there are numerous types of a certain cell class, the so-called bipolar cells. To date, 14 different types have been identified in the mouse. How does this diversity emerge—do the cells have different roles in visual processing?

These are the questions Philipp Berens deals with. “By means of computer models, I try to understand the functional and biophysical properties of these cells,” Berens explains. “The models build on physiological and anatomical data from experimental research.” Computational modelling allows him to observe the cell types in different settings and to draw conclusions from their behavior.

In previous collaborations with experimental researchers, Berens has studied another cell type in the retina: the ganglion cells. These neurons receive their inputs from bipolar cells and send the output of the retina as nerve impulses to the brain.

Using statistical methods, Berens has identified many different types of ganglion cells. “Until recently, the existence of only a handful of ganglion cell types had been assumed—however, we found 30 to 40 distinct types. They all fulfill a different function and project their own image version to the brain,” Berens says.

Analyzing bipolar cells will enable the neuroscientist to understand how the wide variety of ganglion cells is created. At the same time, Berens pursues medical applications with his research. In a second step, he plans to investigate the impact of degenerative retinal diseases on various cell types.

“Do all bipolar cell types fail simultaneously or do some survive longer than others? And may the results from these findings serve as a diagnostic marker, which allows us to analyze the progress of the disease in a patient?” Berens asks.

By means of the Bernstein Award, Berens plans to establish a research group at the University of Tübingen. Here, Berens is already heading a project at the Bernstein Center and the Werner Reichardt Center for Integrative Neuroscience – CIN (Cluster of Excellence at the university) and has several collaborations.

He is looking forward to the forthcoming research projects: “The challenge in trying to understand the nervous system is to find a part that is sufficiently complex to facilitate exciting things to happen—and that is at the same time simple enough to allow its understanding. The retina is an ideal example of this.”

Dr. Philipp Berens is born in 1981 and has studied bioinformatics (diploma) and philosophy (BA) at the University of Tübingen. From 2008 to 2013, he pursued his PhD in the labs of Professor Dr. Matthias Bethge at the Max Planck Institute for Biological Cybernetics in Tübingen and Professor Dr. Andreas Tolias at Baylor College of Medicine in Houston (USA). For his doctoral thesis on visual population coding, he received the highest possible grade summa cum laude.

From mid 2012 to the end of 2014, he was a postdoctoral research associate in the group of Professor Dr. Matthias Bethge at the Bernstein Center Tübingen. Since November 2014, Berens is heading a project in the labs of Professor Dr. Matthias Bethge and Professor Dr. Thomas Euler at the Bernstein Center Tübingen and the University Hospital of Tübingen. He continuous to be a visiting scholar in the lab of Professor Dr. Andreas Tolias at Baylor College of Medicine in Houston (USA). For the clear description of his research, Berens won the Klaus Tschira Preis für verständliche Wissenschaft in 2013. He has twice been presented with a teaching award for his lectures at the Tübingen Graduate Training Centre of Neuroscience.

The Bernstein Award has been conferred for the tenth time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Weitere Informationen erteilt Ihnen gerne:

Dr. Philipp Berens
Bernstein Center for Computational Neuroscience Tübingen
Eberhard-Karls-Universität Tübingen
Otfried-Müller-Str. 25
72076 Tübingen
Tel: +49 (0)7071 29 88910
+49 (0)7071 29 89018 (Sekretary – only mornings)

Weitere Informationen: website Philipp Berens Bernstein Conference Bernstein Center Tübingen National Bernstein Network Computational Neuroscience

Dr. Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht TIB advances implementation of transition towards Open Access in high energy physics
13.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>