Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking into the retina—Philipp Berens receives Bernstein Award 2015

15.09.2015

Computational biologist Dr. Philipp Berens has been awarded one of the most attractive junior research prizes worldwide. Using computer models, he investigates the role and structure of the different cell types in the retina.

The Bernstein Award will be presented by Dr. Matthias Kölbel from the Federal Ministry of Education and Research (BMBF) on September 15, 2015 during the Bernstein Conference in Heidelberg.

The award is endowed with up to € 1.25 million and enables to build up an independent research group at a German research institution. Berens plans to establish his research group at the Bernstein Center for Computational Neuroscience at Eberhard Karls University Tübingen.

In our retina, there are numerous types of a certain cell class, the so-called bipolar cells. To date, 14 different types have been identified in the mouse. How does this diversity emerge—do the cells have different roles in visual processing?

These are the questions Philipp Berens deals with. “By means of computer models, I try to understand the functional and biophysical properties of these cells,” Berens explains. “The models build on physiological and anatomical data from experimental research.” Computational modelling allows him to observe the cell types in different settings and to draw conclusions from their behavior.

In previous collaborations with experimental researchers, Berens has studied another cell type in the retina: the ganglion cells. These neurons receive their inputs from bipolar cells and send the output of the retina as nerve impulses to the brain.

Using statistical methods, Berens has identified many different types of ganglion cells. “Until recently, the existence of only a handful of ganglion cell types had been assumed—however, we found 30 to 40 distinct types. They all fulfill a different function and project their own image version to the brain,” Berens says.

Analyzing bipolar cells will enable the neuroscientist to understand how the wide variety of ganglion cells is created. At the same time, Berens pursues medical applications with his research. In a second step, he plans to investigate the impact of degenerative retinal diseases on various cell types.

“Do all bipolar cell types fail simultaneously or do some survive longer than others? And may the results from these findings serve as a diagnostic marker, which allows us to analyze the progress of the disease in a patient?” Berens asks.

By means of the Bernstein Award, Berens plans to establish a research group at the University of Tübingen. Here, Berens is already heading a project at the Bernstein Center and the Werner Reichardt Center for Integrative Neuroscience – CIN (Cluster of Excellence at the university) and has several collaborations.

He is looking forward to the forthcoming research projects: “The challenge in trying to understand the nervous system is to find a part that is sufficiently complex to facilitate exciting things to happen—and that is at the same time simple enough to allow its understanding. The retina is an ideal example of this.”

Dr. Philipp Berens is born in 1981 and has studied bioinformatics (diploma) and philosophy (BA) at the University of Tübingen. From 2008 to 2013, he pursued his PhD in the labs of Professor Dr. Matthias Bethge at the Max Planck Institute for Biological Cybernetics in Tübingen and Professor Dr. Andreas Tolias at Baylor College of Medicine in Houston (USA). For his doctoral thesis on visual population coding, he received the highest possible grade summa cum laude.

From mid 2012 to the end of 2014, he was a postdoctoral research associate in the group of Professor Dr. Matthias Bethge at the Bernstein Center Tübingen. Since November 2014, Berens is heading a project in the labs of Professor Dr. Matthias Bethge and Professor Dr. Thomas Euler at the Bernstein Center Tübingen and the University Hospital of Tübingen. He continuous to be a visiting scholar in the lab of Professor Dr. Andreas Tolias at Baylor College of Medicine in Houston (USA). For the clear description of his research, Berens won the Klaus Tschira Preis für verständliche Wissenschaft in 2013. He has twice been presented with a teaching award for his lectures at the Tübingen Graduate Training Centre of Neuroscience.

The Bernstein Award has been conferred for the tenth time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Weitere Informationen erteilt Ihnen gerne:

Dr. Philipp Berens
Bernstein Center for Computational Neuroscience Tübingen
Eberhard-Karls-Universität Tübingen
Otfried-Müller-Str. 25
72076 Tübingen
Tel: +49 (0)7071 29 88910
+49 (0)7071 29 89018 (Sekretary – only mornings)
E-Mail: philipp.berens@uni-tuebingen.de

Weitere Informationen:

https://philippberens.wordpress.com website Philipp Berens
http://www.bernstein-conference.de Bernstein Conference
http://www.bccn-tuebingen.de Bernstein Center Tübingen
http://www.nncn.de National Bernstein Network Computational Neuroscience

Dr. Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>