Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International research project gets high level of funding

02.09.2015

Funds of $1.35 million for the study of antibody formation

Antibodies are protein molecules that are produced by the body to fight pathogens. Their formation basically follows the principle of evolution. The best candidates are selected and optimised further in multiple rounds of competition.


Logo of the Human Frontier Science Program

© HFSP

Some aspects of antibody formation will be elucidated more closely by a team of researchers from the USA, England, Australia and Germany. This work will be coordinated by Prof Michael Meyer-Hermann, a systems biologist of the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany.

The research project will be funded by US$1.35 million (approximately €1.2 million) from the Human Frontier Science Program (HFSP).

In this collaboration, the scientists aim to better understand the information processing in the germinal centres of lymph nodes. "The so-called B-cells in these centres produce the antibodies that play an important role during infection processes, vaccination and highly targeted therapeutics," says Michael Meyer-Hermann, who directs the Systems Immunology department at the HZI.

He coordinates the research program titled “Cooperation strategy and information processing in and between germinal centre reactions” and will join Prof Michael Dustin of the University of Oxford in the United Kingdom, Dr Gabriel Victora of the Whitehead Institute for Biomedical Sciences, Cambridge, USA, and Prof Carola Vinueasa of the Australian National University in Canberra in the effort to decipher the highly complex processes that go on during the production of these defence molecules.

All previous insights into the maturation of antibodies have been derived from experiments in mice. Human germinal centres cannot be studied directly and some of the cells that are involved in these processes cannot be cultured in the laboratory. For this reason, the scientists will study mice that harbour lymph nodes and immune cells of human origin. Working with these "humanised" mice, the scientists hope to gain the first detailed insights into the processes in the human germinal centre reaction.

Carola Vinuesa is an expert on the role of T-cells in germinal centres and Michael Dustin studies the exchange of information between B- and T-cells, whereas Gabriel Victora compares B-cells from different germinal centres. Meyer-Hermann and his coworkers are the link between these three levels of information processing. "Our partners perform the laboratory experiments and we contribute the mathematical models that allow the results to be analysed and combined into an overall picture," says Meyer-Hermann.

The official start of the project is on September 1st and the project is scheduled to take three years. There is something very special about the funding by the Human Frontier Science Program: Only teams from different continents are funded. This is aimed specifically at establishing international cooperation. “The HFSP is not interested in micromanagement of the projects but prefers to trust the consortium that was selected to receive their funds, a strongly motivating attitude,” says Meyer-Hermann.

The insights, which the researchers hope to gain, will be the basis for specific interventions into the immune response to infections. "To be able to support the body's defence against infections, we first need to understand the underlying processes that go on when the antibodies are made," says Meyer-Hermann. He and his colleagues aim to get closer to an understanding of these processes over the next three years.

The "Systems Immunology" department of the HZI investigates the mathematical modelling of immunological processes. The department is associated with the Braunschweig Integrated Centre for Systems Biology (BRICS), a new research centre for Systems Biology that has been established jointly by the HZI and the Technical University Braunschweig.

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/internatio... - This press release on helmholtz-hzi.de

Dr. Jan Grabowski | Helmholtz-Zentrum für Infektionsforschung
Further information:
http://www.helmholtz-hzi.de

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>