Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International research project gets high level of funding

02.09.2015

Funds of $1.35 million for the study of antibody formation

Antibodies are protein molecules that are produced by the body to fight pathogens. Their formation basically follows the principle of evolution. The best candidates are selected and optimised further in multiple rounds of competition.


Logo of the Human Frontier Science Program

© HFSP

Some aspects of antibody formation will be elucidated more closely by a team of researchers from the USA, England, Australia and Germany. This work will be coordinated by Prof Michael Meyer-Hermann, a systems biologist of the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany.

The research project will be funded by US$1.35 million (approximately €1.2 million) from the Human Frontier Science Program (HFSP).

In this collaboration, the scientists aim to better understand the information processing in the germinal centres of lymph nodes. "The so-called B-cells in these centres produce the antibodies that play an important role during infection processes, vaccination and highly targeted therapeutics," says Michael Meyer-Hermann, who directs the Systems Immunology department at the HZI.

He coordinates the research program titled “Cooperation strategy and information processing in and between germinal centre reactions” and will join Prof Michael Dustin of the University of Oxford in the United Kingdom, Dr Gabriel Victora of the Whitehead Institute for Biomedical Sciences, Cambridge, USA, and Prof Carola Vinueasa of the Australian National University in Canberra in the effort to decipher the highly complex processes that go on during the production of these defence molecules.

All previous insights into the maturation of antibodies have been derived from experiments in mice. Human germinal centres cannot be studied directly and some of the cells that are involved in these processes cannot be cultured in the laboratory. For this reason, the scientists will study mice that harbour lymph nodes and immune cells of human origin. Working with these "humanised" mice, the scientists hope to gain the first detailed insights into the processes in the human germinal centre reaction.

Carola Vinuesa is an expert on the role of T-cells in germinal centres and Michael Dustin studies the exchange of information between B- and T-cells, whereas Gabriel Victora compares B-cells from different germinal centres. Meyer-Hermann and his coworkers are the link between these three levels of information processing. "Our partners perform the laboratory experiments and we contribute the mathematical models that allow the results to be analysed and combined into an overall picture," says Meyer-Hermann.

The official start of the project is on September 1st and the project is scheduled to take three years. There is something very special about the funding by the Human Frontier Science Program: Only teams from different continents are funded. This is aimed specifically at establishing international cooperation. “The HFSP is not interested in micromanagement of the projects but prefers to trust the consortium that was selected to receive their funds, a strongly motivating attitude,” says Meyer-Hermann.

The insights, which the researchers hope to gain, will be the basis for specific interventions into the immune response to infections. "To be able to support the body's defence against infections, we first need to understand the underlying processes that go on when the antibodies are made," says Meyer-Hermann. He and his colleagues aim to get closer to an understanding of these processes over the next three years.

The "Systems Immunology" department of the HZI investigates the mathematical modelling of immunological processes. The department is associated with the Braunschweig Integrated Centre for Systems Biology (BRICS), a new research centre for Systems Biology that has been established jointly by the HZI and the Technical University Braunschweig.

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/internatio... - This press release on helmholtz-hzi.de

Dr. Jan Grabowski | Helmholtz-Zentrum für Infektionsforschung
Further information:
http://www.helmholtz-hzi.de

More articles from Awards Funding:

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Photography: An unusual and surprising picture of science
04.05.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>