Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gravity signals from the depths of space

31.05.2017

The Körber European Science Prize 2017 goes to physicist Karsten Danzmann

Karsten Danzmann is to receive the Körber Prize 2017, endowed with 750,000 euros. The German physicist and his team have developed the key technologies, including high-precision lasers, with which detectors in America were able to provide direct evidence of gravitational waves for the first time in 2015.


Karsten Danzmann

Körber-Stiftung/Friedrun Reinhold

Astronomers have thus literally opened a new window to the cosmos, as they were previously able to explore the universe only by means of electromagnetic waves – light, radio waves, X-rays or gamma rays. "Now gravity has practically sent us its own messengers, the gravitational waves," says Danzmann.

"They mark the beginning of the era of gravitational wave astronomy, which promises new discoveries, as 99 percent of the universe is dark." With the funds of the Körber Prize, Danzmann intends, amongst other things, to further refine laser technology for earth-based detectors.

Karsten Danzmann, 62, studied physics at the University of Hannover, gaining his PhD in 1980. In 1986 he moved to Stanford University in the USA, where he was Professor of Physics until 1989. From 1993 to 2001 he was Head of the Hannover branch of the Max Planck Institute (MPI) for Quantum Optics. Since 2002 he has been the Director of the MPI for Gravitational Physics. Parallel to this, he has taught at the Leibniz University of Hannover since 1993, where he is Head of the Institute of Gravitational Physics.

In the autumn of 2015, a worldwide team of physicists achieved a sensation: The American LIGO detectors were able to provide direct evidence of gravitational waves for the first time. Albert Einstein had theoretically predicted the existence of gravitational waves as early as 1916. According to his theory of relativity, gravity results from the fact that a mass bends four-dimensional space-time. This can be envisaged as a tightly stretched rubber mat. If a heavy ball is placed on it, it buckles downwards – space-time bends. If a smaller ball then passes nearby, its path is deflected by the dent of the heavy ball. This path deviation is the effect of gravity in space-time.

If a very heavy ball is thrown forcefully at the mat, the entire surface of the mat trembles. These vibrations correspond to Einstein's gravitational waves, which spread as cosmic quakes through space-time at the speed of light. Gravitational waves are by nature so weak that Einstein believed they could never be detected. Typical triggers are cosmic catastrophes such as supernova explosions or the fusion of two black holes orbiting each other.

Gravitational waves can be detected directly using Michelson interferometers. These are equipped with two very long measuring arms extending at right angles to each other. The basic principle is simple: If a gravitational wave passes through the detector, one of the arms is compressed and the other is stretched. These changes in length are measured using lasers. The measuring technique is complicated, as it must be extremely precise: The four-kilometre-long measuring arms of the LIGO detectors vary by only a few thousandths of the diameter of a hydrogen atom core.

The enormous measurement precision of the LIGO lasers is the main achievement of the Danzmann team. In Hannover, the researchers operate the GEO600 detector, whose arms are 600 metres long. In work lasting decades, the physicists have trimmed the lasers and measuring instruments in the detector to the highest precision. For example, the optical systems are suspended as pendulums in order to absorb vibrations. Both the laser beam and the measured signals are recycled in the system for amplification. This has further increased the measuring sensitivity tenfold. These technologies, which were initially developed for basic research, are now widely used for practical purposes in many fields, for example in geodesy satellites and in data communication.

With the help of Danzmann's optimizations, the American detectors succeeded in registering a gravitational wave for the first time on 14 September 2015. The wave comes from two black holes with 29 and 36 solar masses that fused 1.3 billion light years away from Earth. A second signal in December 2015 eliminated any remaining doubts that the first signal could have been an artefact.

Starting in 2034, the European Space Agency (ESA) will even be stationing a Michelson interferometer in space. Three satellites will be spanned by measuring arms with a length of 2.5 million kilometres. This LISA detector, the basic concept of which also originates from the Danzmann team, is particularly sensitive to gravitational waves from ultramassive black holes in the centres of galaxies.

The Körber European Science Prize 2017 will be presented to Karsten Danzmann on 7 September in the Great Festival Hall of Hamburg Town Hall.

Every year since 1985, the Körber European Science Prize has honoured a major breakthrough in the physical or life sciences in Europe. The prize is awarded to excellent and innovative research approaches with high application potential. With prize money of 750,000 euros it is one of the world's most highly endowed prizes. To date, six prize winners have also been awarded the Nobel Prize after receiving the Körber Prize.

Weitere Informationen:

http://www.koerber-prize.org

Andrea Bayerlein | idw - Informationsdienst Wissenschaft

Further reports about: LIGO MPI black holes detector gravitational waves laser beam laser technology satellites

More articles from Awards Funding:

nachricht Scientist at Kiel University receive EU funding to develop new implantats
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>