Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

George Fytas receives ERC Advanced Grant for phononics project

13.07.2016

The external member of the Max Planck Institute for Polymer Research (MPI-P), Prof. Dr. George Fytas, has been granted over two million euros by the European Research Council (ERC) for retrieving a dispersion relation for quantized sound waves, so-called phonons, in soft structures.

Soft materials that are periodic on the submicrometer length scale act as both hypersonic phononic and visible light photonic crystals. This means: they coherently scatter elastic waves as well as light in the visible region. The challenges in understanding and engineering phonon soft matter interactions originate from the fact that phonons, unlike photons, do not propagate in a vacuum and therefore do not move with the speed of light.


Small and nanoscale soft phononics (SmartPhon)

MPI-P

However, together with his team at the MPI-P, Fytas has been able to organize soft matter to go hypersonic. With his Brillouin spectroscopy, a technique that records the frequency and wavelength of phonons through the inelastic scattering of laser light, the Greek scientist has retrieved the dispersion relation for phonons propagating in transparent structures.

“In order to achieve such crystal structures, various self-assembled methods as well as powerful spectroscopic techniques are necessary,” says Fytas. Due to his pioneering contribution in the field of soft matter based phononics, the scientist receives an ERC Advanced Grant for outstanding research leaders amounting to over 2.2 million euros. With this funding, he plans to extend his research project "Small and nanoscale soft Phononics" (SmartPhon) in order to tune phonon propagation in hierarchical materials and to engineer strong wave-matter interactions in the subwavelength range with metamaterial behavior.

Further experiments to be conducted in Germany and Greece

While also relying on strong international relations with several partner institutes, in August 2016, Fytas will start another phase of experiments, conducted at the MPI-P in Mainz, Germany, as well as at the Institute of Electronic Structure and Laser and at the University of Crete, Greece. His findings are anticipated for diverse applications in the field of optomechanics developing tunable responsive filters, one-way phonon waveguides and compact acousto-optic sensors. Moreover, heat management technologies directing the heat flow and its recovery profit from Fytas’s discoveries as well as the research area of materials metrology, which by means of measuring nanomechanical properties, offers insights into the physics of materials.

About George Fytas:
Born in Athens, Greece, Geroge Fytas is professor of Physical Chemistry at the Department of Materials Science & Technology of the University of Crete and Head of the Polymer & Colloid Group of IESL-FORTH in Heraklion, Crete, Greece. As an external member, he has also been conducting research at the MPI-P since 1998 focusing on phonon propagation in structured materials and dynamics including the conformation of complex macromolecular and supramolecular systems. Fytas holds a PhD in Physical Chemistry of the Technical University of Hannover, Germany, and wrote his habilitation thesis at the University of Bielefeld, Germany. The scientist is a Fellow of the American Physical Society and has received a Humboldt Senior Research Award.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/erc-advanced-grant

Presse und Kommunikation | Max-Planck-Institut für Polymerforschung

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>