Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

George Fytas receives ERC Advanced Grant for phononics project

13.07.2016

The external member of the Max Planck Institute for Polymer Research (MPI-P), Prof. Dr. George Fytas, has been granted over two million euros by the European Research Council (ERC) for retrieving a dispersion relation for quantized sound waves, so-called phonons, in soft structures.

Soft materials that are periodic on the submicrometer length scale act as both hypersonic phononic and visible light photonic crystals. This means: they coherently scatter elastic waves as well as light in the visible region. The challenges in understanding and engineering phonon soft matter interactions originate from the fact that phonons, unlike photons, do not propagate in a vacuum and therefore do not move with the speed of light.


Small and nanoscale soft phononics (SmartPhon)

MPI-P

However, together with his team at the MPI-P, Fytas has been able to organize soft matter to go hypersonic. With his Brillouin spectroscopy, a technique that records the frequency and wavelength of phonons through the inelastic scattering of laser light, the Greek scientist has retrieved the dispersion relation for phonons propagating in transparent structures.

“In order to achieve such crystal structures, various self-assembled methods as well as powerful spectroscopic techniques are necessary,” says Fytas. Due to his pioneering contribution in the field of soft matter based phononics, the scientist receives an ERC Advanced Grant for outstanding research leaders amounting to over 2.2 million euros. With this funding, he plans to extend his research project "Small and nanoscale soft Phononics" (SmartPhon) in order to tune phonon propagation in hierarchical materials and to engineer strong wave-matter interactions in the subwavelength range with metamaterial behavior.

Further experiments to be conducted in Germany and Greece

While also relying on strong international relations with several partner institutes, in August 2016, Fytas will start another phase of experiments, conducted at the MPI-P in Mainz, Germany, as well as at the Institute of Electronic Structure and Laser and at the University of Crete, Greece. His findings are anticipated for diverse applications in the field of optomechanics developing tunable responsive filters, one-way phonon waveguides and compact acousto-optic sensors. Moreover, heat management technologies directing the heat flow and its recovery profit from Fytas’s discoveries as well as the research area of materials metrology, which by means of measuring nanomechanical properties, offers insights into the physics of materials.

About George Fytas:
Born in Athens, Greece, Geroge Fytas is professor of Physical Chemistry at the Department of Materials Science & Technology of the University of Crete and Head of the Polymer & Colloid Group of IESL-FORTH in Heraklion, Crete, Greece. As an external member, he has also been conducting research at the MPI-P since 1998 focusing on phonon propagation in structured materials and dynamics including the conformation of complex macromolecular and supramolecular systems. Fytas holds a PhD in Physical Chemistry of the Technical University of Hannover, Germany, and wrote his habilitation thesis at the University of Bielefeld, Germany. The scientist is a Fellow of the American Physical Society and has received a Humboldt Senior Research Award.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/erc-advanced-grant

Presse und Kommunikation | Max-Planck-Institut für Polymerforschung

More articles from Awards Funding:

nachricht Tracking down pest control strategies
31.01.2018 | Technische Universität Dresden

nachricht Polymers and Fuels from Renewable Resources
29.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>