Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frank Feldmann Receives SolarWorld Junior Einstein Award 2016

27.06.2016

Two Scientists, Two Institutes, One Goal: Highest Efficiency Solar Cells

For the eleventh year in a row, SolarWorld’s prestigious Junior Einstein Award has been awarded to excellent young scientists and engineers. At the award ceremony, which took place during the Intersolar Europe in Munich on June 22, 2016, the German solar company presented this year’s award to two young scientists: Dr. Frank Feldmann of the Fraunhofer Institute for Solar Energy Systems ISE and his scientific colleague Dr. Udo Roemer of the Institute for Solar Energy Research in Hameln.


SolarWorld Junior Einstein Award 2016. (f.l.t.r.) Frank Asbeck, founder and CEO of SolarWorld, the award recipients Dr. Frank Feldmann and Dr. Udo Römer and jury chairman Dr. Holger Neuhaus.

© SolarWorld AG/Milton Arias

The jury of the international competition honored both researchers for their groundbreaking work on passivated contacts, which enables considerably higher silicon solar cell efficiencies.

In his doctoral thesis, Frank Feldmann laid the foundation for a new world record efficiency of 25.1 percent for both sides-contacted silicon solar cells. Announced in its Press Release 27/2015 (https://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2...), Fraunhofer ISE brought the world record to Germany surpassing the former record for the first time in twenty years. “Frank Feldmann succeeded by using a totally new approach that demonstrates a clear upward potential,” says Jury Chair Dr. Holger Neuhaus.

The full-area passivated back contact, developed by Frank Feldmann, is the special feature of the 25.1% silicon solar cell manufactured at Fraunhofer ISE. To achieve efficiency improvements, the focus was previously on increasingly complex cell structures. In the new concept, the entire rear cell surface can be contacted without any patterning. Compared to the high efficiency solar cell structures, the manufacturing process is simpler and the efficiency higher.

“I am very pleased to receive this award,” says the award recipient from Freiburg. “First, I would like to thank the jury. Many thanks also goes to my thesis supervisor, Prof. Dr. Oliver Paul at the Faculty of Engineering, University of Freiburg and the second supervisor, Prof. Dr. Gerard Willeke, at Fraunhofer ISE.

Frank Feldmann is a member of the research team led by Dr. Martin Hermle, department head of “High Efficiency Silicon Solar Cells” at Fraunhofer ISE. The group around Hermle is working on the so-called TOPCon-Technology (Tunnel Oxide Passivated Contact), in which metal contacts are applied to the rear side without patterning. The selective passivated contact developed by Feldmann allows the majority charge carriers to pass and prevents the minority carriers from recombining. The thickness of the intermediate passivation layer is reduced to one or two nanometers, allowing the charge carriers to “tunnel” through it. Subsequently, a thin coating of highly doped silicon is deposited over the entire layer of ultra-thin tunnel oxide. This novel combination of layers allows electrical current to flow out of the cell with nearly zero loss.

In the photovoltaics industry, the majority of solar cells have an aluminum-alloyed back contact covering the entire rear side. This type of contact, however, limits the efficiency. Therefore, the industry currently retrofits their production to incorporate the PERC (Passivated Emitter Rear Cell) technology in order to increase the solar cell efficiency. With PERC technology, only a small area on the rear side is contacted in order to reduce recombination. PERC, however, requires additional patterning steps and leads to longer current conduction paths in the silicon wafer. TOPCon, on the other hand, offers a possible approach to reduce these loss mechanisms and increase the efficiency.

Prof. Dr. Stefan Glunz, division director of “Solar Cells – Development and Characterization” is pleased that a young researcher at Fraunhofer ISE has again received the SolarWorld Junior Einstein Award. “With his research work, Frank Feldmann has made an important contribution to the evolutionary development of both sides-contacted silicon solar cells.”

Including Frank Feldmann, this is the fifth SolarWorld Junior Einstein Award that has been given to a young researcher at Fraunhofer ISE. The others are: Oliver Schultz 2008, Paul Gundel 2001, Pierre Saint-Cast 2013 and Michael Rauer 2015.

Weitere Informationen:

https://www.ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>