Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First German to be granted the ISMAR Prize since 1980

08.05.2015

Hans Wolfgang Spiess receives ISMAR Prize 2015

Professor Hans Wolfgang Spiess, Max Planck Institute for Polymer Research in Mainz, has been awarded the Prize of the International Society of Magnetic Resonance (ISMAR). ISMAR is the only international scientific organization which covers the whole research field of magnetic resonance (MR), including nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and magnetic resonance imaging (MRI).


Prof. Spiess

MPI-P

These and other MR-methods are used as main research tools in a very wide range of disciplines including Physics, Chemistry, Life Sciences, Materials Research and Medicine. In the course of his career, Spiess has made major inventions in all these diverse fields, now honored by this prestigious award. The prize, jointly conferred to him and a colleague from the Weizmann Institute, Israel, will be handed during the opening session of the upcoming international ISMAR 2015 Conference in August in Shanghai.

Spiess is the first German recipient of the Prize ever since it was given to the German American Hans Dehmelt (Nobel Prize in Physics 1989) and Günther Laukien (founder of BRUKER, market leader in magnetic resonance) in 1980.

World-class research

Hans Wolfgang Spiess, born in 1942, was appointed director at the newly founded Max Planck Institute for Polymer Research in 1984. The research group which he directed until his retirement in November 2012 was standing out as a worldwide leader in the field of magnetic resonance. As such it was a coveted cooperation partner for many colleagues, in Germany and abroad.

His research on polymer and supramolecular systems is considered as fundamental, yet application-oriented and interdisciplinary. Such organic materials find widespread applications as high-performance polymers in technology and medicine. To develop and understand these systems, their structure and internal dynamics have to be known precisely: this is why NMR plays such an important role.

The technique is similar to MRI used in medicine and well-known to the general public. This method not only provides unique insights into the human body but also allows us to understand the relation between the molecular structure and function of materials.

Spiess’ achievements have been acknowledged by numerous national and international prizes and awards, including the Leibniz Prize, the Ampere Prize, the Liebig- and Walther Nernst Medals, the Paul J. Flory Research Prize, the Zavoisky Award, and the medal of honor of the State Rhineland-Palatinate, as well as several honorary doctorates conferred by foreign universities.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/ISMAR_Prize_2015_Spiess - Press release
http://www.mpip-mainz.mpg.de/polymer_spectroscopy - Information about Prof. Spiess and his research
http://www.mpip-mainz.mpg.de/home/en - Max Planck Institute for Polymer Research

Natacha Bouvier | Max-Planck-Institut für Polymerforschung

More articles from Awards Funding:

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Call for nominations of outstanding catalysis researchers for the Otto Roelen Medal 2018
20.06.2017 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>