Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emmy Noether junior research group investigates new magnetic structures for spintronics applications

11.10.2016

New Emmy Noether independent junior research group TWIST to be set up at Mainz University / Skyrmions could one day make the storage media in our computers smaller and more efficient

Theoretical physicist Dr. Karin Everschor-Sitte will be setting up an Emmy Noether independent junior research group at Johannes Gutenberg University Mainz (JGU) with the aid of funding from the German Research Foundation (DFG). The workgroup TWIST – short for Topological Whirls in SpinTronics – will be looking at skyrmions.


From 'hairy ball' to skyrmion: If a hairy ball (top) is projected onto a surface, a skyrmion (bottom) is generated.

Ill./©: Dr. Karin Everschor-Sitte and Dr. Matthias Sitte

These are new magnetic 'particles' named after the physicist Tony Skyrme that could in future ensure that the storage media in our computers become smaller and more efficient. A skyrmion can be described as a kind of node or vortex within a magnetic texture.

Skyrmions are characterized by the fact that they are more stable than any other magnetic structures and react particularly readily to spin currents. This is why skyrmions are considered to be of relevance to technological applications in the field of spintronics, a young physics discipline that is exploring not only the electronic charges of such particles, but also their spin, i.e., their magnetic properties.

The objective of Dr. Karin Everschor-Sitte is to gain a deeper understanding of the interaction between skyrmions, magnetic structures, and spin and charge currents and to develop new theories that will enable her to make the best use of skyrmions in technological applications.

Her future projects could produce some innovative concepts that would be of commercial interest. "We are delighted that Dr. Karin Everschor-Sitte will be contributing to our work in the field of spintronics," says Professor Jairo Sinova, Director of SPICE, the Spin Phenomena Interdisciplinary Center at Mainz University that, alongside the Emmy Noether group to be established in November 2016, is also affiliated with the Condensed Matter Physics (KOMET) work group of the JGU Institute of Physics.

Through its Emmy Noether Program, the German Research Foundation supports young researchers in achieving independence at an early stage of their scientific careers by giving them the opportunity to head a junior research group and thus gain the qualifications required for a university teaching career. Independent junior research groups are usually funded for a period of five years. Dr. Karin Everschor-Sitte worked at the University of Texas at Austin in the USA from 2013 to 2015 and relocated to Mainz in November 2015. She will begin setting up her workgroup at JGU in November 2016.

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_emmy_noether_twist_01.jpg
Dr. Karin Everschor-Sitte
photo/©: private

http://www.uni-mainz.de/bilder_presse/08_physik_komet_emmy_noether_twist_02.jpg
From 'hairy ball' to skyrmion: If a hairy ball (top) is projected onto a surface, a skyrmion (bottom) is generated.
Ill./©: Dr. Karin Everschor-Sitte and Dr. Matthias Sitte

Further information:
Dr. Karin Everschor-Sitte
INSPIRE Group
Condensed Matter Physics (KOMET)
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23643
fax +49 6131 39-26375
e-mail: kaeversc@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/karin-everschor-sitte/

Weitere Informationen:

http://www.staff.uni-mainz.de/kaeversc/index.html

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Radio astronomers score high marks in the competition for EU funding
12.01.2017 | Max-Planck-Institut für Radioastronomie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Molecule flash mob

19.01.2017 | Physics and Astronomy

Rabies viruses reveal wiring in transparent brains

19.01.2017 | Health and Medicine

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>