Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dr. Andrew G. Mark awarded with Günter Petzow Prize 2015

13.05.2015

Andrew G. Mark will be awarded this year’s Günter Petzow Prize from the Max Planck Institute for Intelligent Systems. He will be honoured for his significant contribution to the development of a new nanofabrication technique for manufacturing, precisely and efficiently, hybrid multifunctional nanostructures with diverse 3D shapes.

Up to now, it was very difficult to fabricate structures with sizes less than 100 nanometres that did not have symmetrical shapes. With this new process, three-dimensional nanostructures can be custom fabricated from various materials by vapour deposition. This has allowed researchers to produce hybrid nanoscopic structures that can be composed of materials with very diverse physical properties – metals, semiconductors, magnetic materials, and insulators.


Dr. Andrew G. Mark, Max Planck Institute for Intelligent Systems, Stuttgart

Copyright Carmen M. Müller

The general technique is based on vapour deposition in high vacuum coupled with complex substrate manipulation during growth. However, unlike conventional vapour deposition schemes, this one exploits local shadowing of adjacent structures, with the shadow angles controlled by complex substrate manipulation to guide the shape of discrete structures. This technique has been used in the past to produce structured films in the micron size regime.

However, it had not been applied to the growth of colloidal nanostructures from metals because surface diffusion and stochastic nucleation limit the uniformity and fidelity of the possible structures. Andrew made significant contributions to the development of the instrumentation and techniques that allow the process to be applied to the fabrication of truly nanoscale structures, in technologically important materials, and in large quantities.

As an example of the possible applications, the researchers have produced helices of gold that function as absorbing nanoantennas for light. The colour of light that the antennas absorb can be controlled by their size and material composition.

And the asymmetrical shape of the particles can be controlled to tune their interaction with light of different polarizations. Other applications that are being pursued with the new fabrication method include shaped nanomagnets, thin films for the interaction with spin-polarized electrons, and chemical nanomotors.

Andrew G. Mark studied physics at the Queen’s University in Canada where he finished his Ph.D. thesis in 2009. After 3 years as postdoctoral fellow with Prof. Rasmita Raval at the University of Liverpool, he joined 2012 the Research Group “Micro, Nano, and Molecular Systems“ at Max Planck Institute for Intelligent Systems in Stuttgart, headed by Professor Peer Fischer.

Since 2006, the Stuttgart location of the Max Planck Institute for Intelligent Systems annually awards the Günter Petzow Prize to a young scientist from the institute for outstanding research in the field of material sciences. The prize is sponsored by the Robert Bosch GmbH and is presented every year at the Günter Petzow colloquium, the institute’s scientific colloquium. Professor Günter Petzow headed the Max Planck Institute for Metals Research (the predecessor of the Max Planck Institute for Intelligent Systems) as director between 1973 and 1994.

The Günter Petzow Colloquium and the award ceremony will take place on Friday, July 24th. It will start off with coffee at 12.30 pm. The public talks, which will mostly be held in German, commence at 1 pm. More information can be found on the Institute’s homepage under www.is.mpg.de/en_gpk2015 .

Weitere Informationen:

http://www.is.mpg.de/en_gpk2015
http://www.is.mpg.de/fischer

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>