Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dr. Andrew G. Mark awarded with Günter Petzow Prize 2015

13.05.2015

Andrew G. Mark will be awarded this year’s Günter Petzow Prize from the Max Planck Institute for Intelligent Systems. He will be honoured for his significant contribution to the development of a new nanofabrication technique for manufacturing, precisely and efficiently, hybrid multifunctional nanostructures with diverse 3D shapes.

Up to now, it was very difficult to fabricate structures with sizes less than 100 nanometres that did not have symmetrical shapes. With this new process, three-dimensional nanostructures can be custom fabricated from various materials by vapour deposition. This has allowed researchers to produce hybrid nanoscopic structures that can be composed of materials with very diverse physical properties – metals, semiconductors, magnetic materials, and insulators.


Dr. Andrew G. Mark, Max Planck Institute for Intelligent Systems, Stuttgart

Copyright Carmen M. Müller

The general technique is based on vapour deposition in high vacuum coupled with complex substrate manipulation during growth. However, unlike conventional vapour deposition schemes, this one exploits local shadowing of adjacent structures, with the shadow angles controlled by complex substrate manipulation to guide the shape of discrete structures. This technique has been used in the past to produce structured films in the micron size regime.

However, it had not been applied to the growth of colloidal nanostructures from metals because surface diffusion and stochastic nucleation limit the uniformity and fidelity of the possible structures. Andrew made significant contributions to the development of the instrumentation and techniques that allow the process to be applied to the fabrication of truly nanoscale structures, in technologically important materials, and in large quantities.

As an example of the possible applications, the researchers have produced helices of gold that function as absorbing nanoantennas for light. The colour of light that the antennas absorb can be controlled by their size and material composition.

And the asymmetrical shape of the particles can be controlled to tune their interaction with light of different polarizations. Other applications that are being pursued with the new fabrication method include shaped nanomagnets, thin films for the interaction with spin-polarized electrons, and chemical nanomotors.

Andrew G. Mark studied physics at the Queen’s University in Canada where he finished his Ph.D. thesis in 2009. After 3 years as postdoctoral fellow with Prof. Rasmita Raval at the University of Liverpool, he joined 2012 the Research Group “Micro, Nano, and Molecular Systems“ at Max Planck Institute for Intelligent Systems in Stuttgart, headed by Professor Peer Fischer.

Since 2006, the Stuttgart location of the Max Planck Institute for Intelligent Systems annually awards the Günter Petzow Prize to a young scientist from the institute for outstanding research in the field of material sciences. The prize is sponsored by the Robert Bosch GmbH and is presented every year at the Günter Petzow colloquium, the institute’s scientific colloquium. Professor Günter Petzow headed the Max Planck Institute for Metals Research (the predecessor of the Max Planck Institute for Intelligent Systems) as director between 1973 and 1994.

The Günter Petzow Colloquium and the award ceremony will take place on Friday, July 24th. It will start off with coffee at 12.30 pm. The public talks, which will mostly be held in German, commence at 1 pm. More information can be found on the Institute’s homepage under www.is.mpg.de/en_gpk2015 .

Weitere Informationen:

http://www.is.mpg.de/en_gpk2015
http://www.is.mpg.de/fischer

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Awards Funding:

nachricht Breakthrough Prize for Kim Nasmyth
04.12.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht The key to chemical transformations
29.11.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>