Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinguished award for Fraunhofer MEVIS research scientist

03.12.2014

– a video illustrates the function of the award-winning method

Fabian Zöhrer, physicist at the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen, received the GHTC® – the German High Tech Champions Award on December 2nd. The award was bestowed in Chicago at RSNA 2014, the world’s foremost radiology conference, for a software method that can improve early detection and diagnosis of breast cancer. Zöhrer developed the software with fellow computer scientist Joachim Georgii and MEVIS Institute Director Horst Hahn. A video, illustrating how the promising method works, can be seen at http://s.fhg.de/Bridge

The new software makes it possible for physicians to use multiple imaging methods simultaneously for early detection of breast cancer. It is especially applicable for women with very dense breast tissue. In such cases, using only one imaging method is often not enough for a reliable diagnosis. Instead, using a combination of different procedures, such as magnetic resonance imaging (MRI) and mammography, is more sensible, because each imaging method gives additional, supplementary information.

The problem: In the MR scanner, the patient lies on her stomach, and during mammography, she stands upright. These different positions can lead to drastic changes in tumor position or suspicious areas and complicate image comparison.

The new MEVIS method can correct this flaw. ‘Multimodal position correlation’ can automatically transfer the position of a tumor from one image dataset to another. Using this procedure, a doctor can select a certain critical area in the tissue on a mammography image. The same monitor shows an MRI image of the patient. A small circle automatically emerges in the latter image showing the same critical area identified on the mammography image.

“Doctors no longer need to reconstruct the tissue mentally to estimate where it should be seen in another image. Our software does that for them,” says Zöhrer. “It simplifies the procedure, saves time, and sometimes helps prevent errors.”

The software can be integrated in PACS viewers, common image storage and display programs that enable images from different methods to be displayed on a single monitor. In a clinical study, the method might also be capable of automatically identifying particular tissue areas in the images of different participants.

The award gave Zöhrer and his team the opportunity to showcase the market-ready innovation to the world’s leading medical technology companies at RSNA 2014. The GHTC® – the German High Tech Champions Award, is a constituent part of the “International Research Marketing” collaborative project, a joint initiative of the Alexander von Humboldt Foundation, the German Academic Exchange Service, the Deutsche Forschungsgemeinschaft, and the Fraunhofer-Gesellschaft.

All activities within the project are part of the “Promote Innovation and Research in Germany” initiative under its “Research in Germany” brand. The initiative is funded by the German Federal Ministry of Education and Research.


Weitere Informationen:

http://s.fhg.de/Press-Release-Bridge

Bianka Hofmann | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>