Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Simulations for Real World Engines and Turbines: FVV awards Hans Dinger Prize 2016

05.10.2016

New digital simulation methods allow engineers to develop clean and sustainable engines and turbines. This is the conclusion of the 2016 contest of the Hans Dinger Prize (HDP). The Forschungsvereinigung Verbrennungskraftmaschinen (FVV, Research Association for Combustion Engines) awarded its young researchers prize for the sixth time this year. It recognises the excellence of the scientific work of young scientists contributing to the success of the association’s industrial collective research (IGF) projects. This year’s awardees are graduates from the universities of Aachen, Hannover and Stuttgart. The winner received 3,000 Euros.

The 2016 award went to Lukas Berger, RWTH Aachen University, who studied in his master thesis the formation of soot emissions in aircraft gas turbine engines and developed a very fast operating simulation tool to enhance the prediction of the emissions.


Hans Dinger-Award 2016 - 1st Prize: Lukas Berger

FVV e.V. / Dirk Laessig, Fotograf


Hans Dinger Award 2016 - The Winners: José Urbano, Florian Bühner und Lukas Berger (v.l.n.r.)

FVV e.V. / Dirk Laessig, Fotograf

Developing next-generation gas turbines with lower emissions

The FVV research project from which Lukas Berger’s master thesis has emerged dealt with a theoretical predictive model development of gas turbine emissions. Basically, developers may revert to various state-of-the-art simulation methods which differ in their level of detail. Direct Numerical Simulations (DNS) operate with a high accuracy which is comparable to experimental validations. However, due to their high computational burden they cannot be applied to real world aero engines.

That was the starting point of Berger’s master thesis: The aim was to investigate into the soot-turbulence interaction in a gas turbine combustion chamber on the basis of DNS data and to use these findings for simple Large-Eddy-Simulations (LES). By using a self-developed software he identified those DNS parameters that are relevant for modelling the formation of soot emissions.

In a next step, the young researcher developed an LES model to describe soot formation mechanisms for turbulent flames, which reduces the modelling errors by 50 per cent compared to existing approaches. “This model allows to predict soot-turbulence interactions in a fast and efficient way, which is a prerequisite for the design of next-generation low-emission gas turbines”, says Univ.-Prof. Dr.-Ing. Heinz Pitsch, Director of the Institute for Combustion Technology (ITV) at RWTH Aachen University.

Broadening the understanding of catalysts

The effectiveness of a catalytic converter depends on its operating temperature and various other factors. For catalysts that contain platinum or palladium as reactive component, FVV has studied in a research project the composition of a diesel oxidation catalyst, its aging and the nobel metal oxide formation. With his winning second place master thesis, Florian Bühner, University of Stuttgart, contributed to the overall project findings experimental validations on the chemistry of the reactions taking place on the catalyst.

In addition, he established a mathematical model for chemical reaction kinetics by taking into account the dynamic processes of noble metal oxide formation and reduction during catalyst operation. It turned out that Bühner’s mathematical calculations were identical with values well-known from the literature. “This master thesis contributes to a better understanding of reaction kinetics. By comparing additonal experimental validations with the simulations, the model’s design process could be further substantiated”, says Prof. Dr.-Ing. Ulrich Nieken, Director of the Institute of Chemical Process Engineering (ICVT) at the University of Stuttgart.

Increasing the durability of turbine blades

Third place winner, José Urbano from Leibniz University Hannover, dealt in his work assignment with aerodynamic stresses from turbomachinery blade vibrations. Very small, inevitable random variations in material composition and dimensions, resulting from the production process, together with the impact of external forces, resulting for example from the gas flow, may lead to very high vibration amplitudes and consequently to premature material failure. The FVV developed in a research project a simplified model approach, which should make it possible to identify critical vibration states of the blades already during the design phase of turbomachinery. Urbano’s work assignment focussed on the extension of simulations taking into account the aeroelastic interaction of oscillating blades. “The study work represents a significant extension of a substructure-based modelling procedure and thus contributes to improve the simulative vibration prediction of mistuned turbine blades”, explains Prof. Dr.-Ing. Jörg Wallaschek, Director of the Institute of Dynamics and Vibration Research (IDS) at Leibniz University Hannover.

Improving continuously the development of combustion engines

The prize winning research projects are part of the German Industrial Collective Research (IGF) Programme. They were financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the FVV’s own research funds. Since 2006 the FVV has been awarding the Hans Dinger Prize every two years to three young scientists who have particularly contributed with their work to the success of IGF projects on the association’s evolving research agenda. The prize recognises the scientific excellence of the work, its practical relevance and, in particular, the innovative character of the result of the research. The 2016 HDP Award was presented in Magdeburg on 29th September as part of the FVV Autumn Meeting. The prize commemorates the former CEO and CTO of the MTU. Hans Dinger (1927 to 2010) promoted the idea of industrial collective research all his life. From 1989 until his death he was Honorary President of the FVV.

Dipl.-Übers. Petra Tutsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.fvv-net.de

Further reports about: Turbines Verbrennungskraftmaschinen blades gas turbines thesis turbine blades

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>