Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Simulations for Real World Engines and Turbines: FVV awards Hans Dinger Prize 2016

05.10.2016

New digital simulation methods allow engineers to develop clean and sustainable engines and turbines. This is the conclusion of the 2016 contest of the Hans Dinger Prize (HDP). The Forschungsvereinigung Verbrennungskraftmaschinen (FVV, Research Association for Combustion Engines) awarded its young researchers prize for the sixth time this year. It recognises the excellence of the scientific work of young scientists contributing to the success of the association’s industrial collective research (IGF) projects. This year’s awardees are graduates from the universities of Aachen, Hannover and Stuttgart. The winner received 3,000 Euros.

The 2016 award went to Lukas Berger, RWTH Aachen University, who studied in his master thesis the formation of soot emissions in aircraft gas turbine engines and developed a very fast operating simulation tool to enhance the prediction of the emissions.


Hans Dinger-Award 2016 - 1st Prize: Lukas Berger

FVV e.V. / Dirk Laessig, Fotograf


Hans Dinger Award 2016 - The Winners: José Urbano, Florian Bühner und Lukas Berger (v.l.n.r.)

FVV e.V. / Dirk Laessig, Fotograf

Developing next-generation gas turbines with lower emissions

The FVV research project from which Lukas Berger’s master thesis has emerged dealt with a theoretical predictive model development of gas turbine emissions. Basically, developers may revert to various state-of-the-art simulation methods which differ in their level of detail. Direct Numerical Simulations (DNS) operate with a high accuracy which is comparable to experimental validations. However, due to their high computational burden they cannot be applied to real world aero engines.

That was the starting point of Berger’s master thesis: The aim was to investigate into the soot-turbulence interaction in a gas turbine combustion chamber on the basis of DNS data and to use these findings for simple Large-Eddy-Simulations (LES). By using a self-developed software he identified those DNS parameters that are relevant for modelling the formation of soot emissions.

In a next step, the young researcher developed an LES model to describe soot formation mechanisms for turbulent flames, which reduces the modelling errors by 50 per cent compared to existing approaches. “This model allows to predict soot-turbulence interactions in a fast and efficient way, which is a prerequisite for the design of next-generation low-emission gas turbines”, says Univ.-Prof. Dr.-Ing. Heinz Pitsch, Director of the Institute for Combustion Technology (ITV) at RWTH Aachen University.

Broadening the understanding of catalysts

The effectiveness of a catalytic converter depends on its operating temperature and various other factors. For catalysts that contain platinum or palladium as reactive component, FVV has studied in a research project the composition of a diesel oxidation catalyst, its aging and the nobel metal oxide formation. With his winning second place master thesis, Florian Bühner, University of Stuttgart, contributed to the overall project findings experimental validations on the chemistry of the reactions taking place on the catalyst.

In addition, he established a mathematical model for chemical reaction kinetics by taking into account the dynamic processes of noble metal oxide formation and reduction during catalyst operation. It turned out that Bühner’s mathematical calculations were identical with values well-known from the literature. “This master thesis contributes to a better understanding of reaction kinetics. By comparing additonal experimental validations with the simulations, the model’s design process could be further substantiated”, says Prof. Dr.-Ing. Ulrich Nieken, Director of the Institute of Chemical Process Engineering (ICVT) at the University of Stuttgart.

Increasing the durability of turbine blades

Third place winner, José Urbano from Leibniz University Hannover, dealt in his work assignment with aerodynamic stresses from turbomachinery blade vibrations. Very small, inevitable random variations in material composition and dimensions, resulting from the production process, together with the impact of external forces, resulting for example from the gas flow, may lead to very high vibration amplitudes and consequently to premature material failure. The FVV developed in a research project a simplified model approach, which should make it possible to identify critical vibration states of the blades already during the design phase of turbomachinery. Urbano’s work assignment focussed on the extension of simulations taking into account the aeroelastic interaction of oscillating blades. “The study work represents a significant extension of a substructure-based modelling procedure and thus contributes to improve the simulative vibration prediction of mistuned turbine blades”, explains Prof. Dr.-Ing. Jörg Wallaschek, Director of the Institute of Dynamics and Vibration Research (IDS) at Leibniz University Hannover.

Improving continuously the development of combustion engines

The prize winning research projects are part of the German Industrial Collective Research (IGF) Programme. They were financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the FVV’s own research funds. Since 2006 the FVV has been awarding the Hans Dinger Prize every two years to three young scientists who have particularly contributed with their work to the success of IGF projects on the association’s evolving research agenda. The prize recognises the scientific excellence of the work, its practical relevance and, in particular, the innovative character of the result of the research. The 2016 HDP Award was presented in Magdeburg on 29th September as part of the FVV Autumn Meeting. The prize commemorates the former CEO and CTO of the MTU. Hans Dinger (1927 to 2010) promoted the idea of industrial collective research all his life. From 1989 until his death he was Honorary President of the FVV.

Dipl.-Übers. Petra Tutsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.fvv-net.de

Further reports about: Turbines Verbrennungskraftmaschinen blades gas turbines thesis turbine blades

More articles from Awards Funding:

nachricht Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction
17.01.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Inspired by nature - scalable chemical factory due to photomicroreactors
11.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>