Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Digital Simulations for Real World Engines and Turbines: FVV awards Hans Dinger Prize 2016


New digital simulation methods allow engineers to develop clean and sustainable engines and turbines. This is the conclusion of the 2016 contest of the Hans Dinger Prize (HDP). The Forschungsvereinigung Verbrennungskraftmaschinen (FVV, Research Association for Combustion Engines) awarded its young researchers prize for the sixth time this year. It recognises the excellence of the scientific work of young scientists contributing to the success of the association’s industrial collective research (IGF) projects. This year’s awardees are graduates from the universities of Aachen, Hannover and Stuttgart. The winner received 3,000 Euros.

The 2016 award went to Lukas Berger, RWTH Aachen University, who studied in his master thesis the formation of soot emissions in aircraft gas turbine engines and developed a very fast operating simulation tool to enhance the prediction of the emissions.

Hans Dinger-Award 2016 - 1st Prize: Lukas Berger

FVV e.V. / Dirk Laessig, Fotograf

Hans Dinger Award 2016 - The Winners: José Urbano, Florian Bühner und Lukas Berger (v.l.n.r.)

FVV e.V. / Dirk Laessig, Fotograf

Developing next-generation gas turbines with lower emissions

The FVV research project from which Lukas Berger’s master thesis has emerged dealt with a theoretical predictive model development of gas turbine emissions. Basically, developers may revert to various state-of-the-art simulation methods which differ in their level of detail. Direct Numerical Simulations (DNS) operate with a high accuracy which is comparable to experimental validations. However, due to their high computational burden they cannot be applied to real world aero engines.

That was the starting point of Berger’s master thesis: The aim was to investigate into the soot-turbulence interaction in a gas turbine combustion chamber on the basis of DNS data and to use these findings for simple Large-Eddy-Simulations (LES). By using a self-developed software he identified those DNS parameters that are relevant for modelling the formation of soot emissions.

In a next step, the young researcher developed an LES model to describe soot formation mechanisms for turbulent flames, which reduces the modelling errors by 50 per cent compared to existing approaches. “This model allows to predict soot-turbulence interactions in a fast and efficient way, which is a prerequisite for the design of next-generation low-emission gas turbines”, says Univ.-Prof. Dr.-Ing. Heinz Pitsch, Director of the Institute for Combustion Technology (ITV) at RWTH Aachen University.

Broadening the understanding of catalysts

The effectiveness of a catalytic converter depends on its operating temperature and various other factors. For catalysts that contain platinum or palladium as reactive component, FVV has studied in a research project the composition of a diesel oxidation catalyst, its aging and the nobel metal oxide formation. With his winning second place master thesis, Florian Bühner, University of Stuttgart, contributed to the overall project findings experimental validations on the chemistry of the reactions taking place on the catalyst.

In addition, he established a mathematical model for chemical reaction kinetics by taking into account the dynamic processes of noble metal oxide formation and reduction during catalyst operation. It turned out that Bühner’s mathematical calculations were identical with values well-known from the literature. “This master thesis contributes to a better understanding of reaction kinetics. By comparing additonal experimental validations with the simulations, the model’s design process could be further substantiated”, says Prof. Dr.-Ing. Ulrich Nieken, Director of the Institute of Chemical Process Engineering (ICVT) at the University of Stuttgart.

Increasing the durability of turbine blades

Third place winner, José Urbano from Leibniz University Hannover, dealt in his work assignment with aerodynamic stresses from turbomachinery blade vibrations. Very small, inevitable random variations in material composition and dimensions, resulting from the production process, together with the impact of external forces, resulting for example from the gas flow, may lead to very high vibration amplitudes and consequently to premature material failure. The FVV developed in a research project a simplified model approach, which should make it possible to identify critical vibration states of the blades already during the design phase of turbomachinery. Urbano’s work assignment focussed on the extension of simulations taking into account the aeroelastic interaction of oscillating blades. “The study work represents a significant extension of a substructure-based modelling procedure and thus contributes to improve the simulative vibration prediction of mistuned turbine blades”, explains Prof. Dr.-Ing. Jörg Wallaschek, Director of the Institute of Dynamics and Vibration Research (IDS) at Leibniz University Hannover.

Improving continuously the development of combustion engines

The prize winning research projects are part of the German Industrial Collective Research (IGF) Programme. They were financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the FVV’s own research funds. Since 2006 the FVV has been awarding the Hans Dinger Prize every two years to three young scientists who have particularly contributed with their work to the success of IGF projects on the association’s evolving research agenda. The prize recognises the scientific excellence of the work, its practical relevance and, in particular, the innovative character of the result of the research. The 2016 HDP Award was presented in Magdeburg on 29th September as part of the FVV Autumn Meeting. The prize commemorates the former CEO and CTO of the MTU. Hans Dinger (1927 to 2010) promoted the idea of industrial collective research all his life. From 1989 until his death he was Honorary President of the FVV.

Dipl.-Übers. Petra Tutsch | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Turbines Verbrennungskraftmaschinen blades gas turbines thesis turbine blades

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>