Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DFG funds new research project on seagrass and macroalgae ecosystems in the tropics with €400,000


The impact of environmental changes on the ecosystems of seagrass and macroalgae in the tropics is at the centre of a new research project at the Leibniz Center for Tropical Marine Ecology (ZMT). Funded by the German Research Foundation (DFG) with more than 400,000 Euro the SEAMAC* project runs for three years and is led by Dr. Mirta Teichberg, head of the junior research group “Algae and Seagrass Ecology” at the ZMT.

In shallow water ecosystems tropical seagrasses and macroalgae are an important first link in the food chain and provide a number of significant services not only to the organisms living in these environments but also to humans and other connected ecosystems such as mangroves or coral reefs.

Researchers from the Leibniz Center for Tropical Marine Ecology (ZMT) taking samples in Zanzibar

© Dieuwke Hoeijmakers, ZMT

Aside from offering shoreline protection from erosion and storms, seagrasses and macroalgae provide habitat for many fish and invertebrates. They also play an important role in mitigating climate change. As so-called carbon sinks they take up CO2 and remove it from the atmosphere.

However, these coastal ecosystems are currently facing a significant threat from eutrophication caused by wastewater or residue from aquaculture as well as from urbanisation and deforestation which increases run-off of nutrients and sediments to the coastal zone.

“On a global scale seagrasses are lost at an estimated 7 % per year. These figures already date back seven years so the loss has most likely increased since then“ says project coordinator Dr. Teichberg.

The marine biologist is focusing her research on regions in the Indo-Pacific and the tropical Atlantic. “Although the tropics host the largest number of seagrass species there is not that much known about how these ecosystems function and how they will cope with anthropogenic impact and environmental changes,” she explains.

The first expedition in September will lead the researcher to Zanzibar (Tanzania) where she has already done some work on seagrass ecosystems as part of a previous project with the Institute of Marine Science. In the second year of the project the scientist will head to the Smithsonian Tropical Research Institute in Bocas del Toro, Panama to do further field studies and eventually be able to compare the seagrasses in two very different tropical regions.

“The first step is to examine the seagrass communities under varying environmental conditions at the sites and identify potential drivers of community change. In the second stage we will be linking the traits of the organisms and the communities to different environmental conditions.”

When investigating the traits of seagrasses and macroalgae Dr. Teichberg will be examining a series of different plant morphological characteristics such as leaf structure and size, physiological traits such as rates of growth, photosynthesis, nutrient and carbon uptake , and biochemical traits linked to light absorption and defense against grazing or disease. In the future there are also plans to use the generated data for a trait-based model to predict the impact of environmental change on these ecosystems.

Summing up her motivation behind the research Dr. Teichberg says: “Essentially, we are interested to find out how organisms function in their environment, to understand their role in the ecosystem, and how environmental change will impact them in the future.”

Andrea Daschner | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: DFG Marine Tropenökologie ZMT coastal ecosystems ecosystems

More articles from Awards Funding:

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht TIB advances implementation of transition towards Open Access in high energy physics
13.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>