Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017

The research groups lead by Prof. Dr. Elly Tanaka, Prof. Dr. Marius Ader and Dr. Mike Karl at the DFG-Research Center for Regenerative Therapies Dresden (CRTD) – Cluster of Excellence at TU Dresden, have received funding in the BMBF program “Validation of the technological and societal innovation potential of scientific research – VIP+” with their CLEANSIGHT research team. The research project will focus on validating a retinal cell–based screening platform for fast and efficient identification of small molecules for the treatment of retinal degenerative diseases.

With more than 150 million affected people, retinal degenerative diseases are one of the most frequent causes of visual impairment worldwide. Examples include genetically inherited Retinitis Pigmentosa (RP), and age-related macular degeneration (AMD). The prevalence of AMD is expected to reach epidemic proportions due to an increasingly aging population. There are currently no effective therapies to prevent or cure these diseases.


Retinal pigment epithelial cell culture & Cleansight team (left to right): Prof. Dr. Elly Tanaka, Prof. Dr. Marius Ader, Dr. Mike Karl, Dr. Seba Almedawar, Dr. Sven Schreiter & Dr. Dominic Eberle

© CRTD, Dominic Eberle

Retinal diseases are associated with build-up of waste products. Vision loss may occur, for example, when the retinal pigment epithelial cells (RPE), which underlie the neural retina, are impaired in taking up and recycling natural waste products of the retina.

This process, known as phagocytosis, is essential for visual function and survival of our light sensitive retinal neurons, called photoreceptors. Abnormal RPE cell function can lead to retinal degeneration, visual impairment and even loss of sight. Therapeutic compounds modulating RPE functions might prevent vision loss.

”The aim of CLEANSIGHT is to validate a RPE-based screening platform, which we have developed since 2013, to search for classes of compounds that are suitable candidates for the development of novel therapeutics, and bring it to industry standards. RPE cells used in this platform are derived from human stem cells by a patented and very efficient protocol, which made the platform development possible”, explains the research team consisting of Dr. Seba Almedawar (project leader), Dr. Sven Schreiter and Dr. Dominic Eberle, supported by Prof. Elly Tanaka, Prof. Marius Ader and Dr. Mike Karl. A procedure patented by Prof. Tanaka enables the production of large quantities of human RPE cells at uniformly high quality in the laboratory. This constitutes a major advance for the development of a screening platform for new therapeutic substances.

The awarded research grant is part of the new Hightech-Strategy „Innovationen für Deutschland“ of the German Federal Government. The rapid transfer of innovative ideas for products and services aims to strengthen Germany’s leading position as the largest national economy and exporter in Europe.

The Grant Office, CMCB (a service unit that supports CRTD, BIOTEC and B CUBE in the acquisition of third-party funds) and the Technology Transfer Office have both closely coordinated the CLEANSIGHT grant application and continue to offer their support to the project team.

Further information on CLEANSIGHT (Dresdner Transferbrief, Issue 2.16)
http://www.qucosa.de/fileadmin/data/qucosa/documents/20367/transferbrief_ausgabe... (pages 10-11)

Press Contact
Franziska Clauß
Press Officer
Phone: +49 351 458 82065, e-Mail: franziska.clauss@crt-dresden.de

Founded in 2006, the DFG Research Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at the TU Dresden has passed the second phase of the Excellence Initiative which aims at promoting top-level research and improving the quality of German universities and research institutions. The goal of the CRTD is to explore the body's self-healing potential and to develop completely new, regenerative therapies for hitherto incurable diseases. The key areas of research include haematology and immunology, diabetes, neurodegenerative diseases and bone regeneration. At the moment, eight professors and ten group leaders are working at the CRTD – integrated into an interdisciplinary network of 87 members at seven different institutions within Dresden. In addition, 21 partners from industry are supporting the network. The synergies in the network allow for a fast translation of results from basic research to clinical applications.

www.crt-dresden.de

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Tracking down pest control strategies
31.01.2018 | Technische Universität Dresden

nachricht Polymers and Fuels from Renewable Resources
29.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>