Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017

The research groups lead by Prof. Dr. Elly Tanaka, Prof. Dr. Marius Ader and Dr. Mike Karl at the DFG-Research Center for Regenerative Therapies Dresden (CRTD) – Cluster of Excellence at TU Dresden, have received funding in the BMBF program “Validation of the technological and societal innovation potential of scientific research – VIP+” with their CLEANSIGHT research team. The research project will focus on validating a retinal cell–based screening platform for fast and efficient identification of small molecules for the treatment of retinal degenerative diseases.

With more than 150 million affected people, retinal degenerative diseases are one of the most frequent causes of visual impairment worldwide. Examples include genetically inherited Retinitis Pigmentosa (RP), and age-related macular degeneration (AMD). The prevalence of AMD is expected to reach epidemic proportions due to an increasingly aging population. There are currently no effective therapies to prevent or cure these diseases.


Retinal pigment epithelial cell culture & Cleansight team (left to right): Prof. Dr. Elly Tanaka, Prof. Dr. Marius Ader, Dr. Mike Karl, Dr. Seba Almedawar, Dr. Sven Schreiter & Dr. Dominic Eberle

© CRTD, Dominic Eberle

Retinal diseases are associated with build-up of waste products. Vision loss may occur, for example, when the retinal pigment epithelial cells (RPE), which underlie the neural retina, are impaired in taking up and recycling natural waste products of the retina.

This process, known as phagocytosis, is essential for visual function and survival of our light sensitive retinal neurons, called photoreceptors. Abnormal RPE cell function can lead to retinal degeneration, visual impairment and even loss of sight. Therapeutic compounds modulating RPE functions might prevent vision loss.

”The aim of CLEANSIGHT is to validate a RPE-based screening platform, which we have developed since 2013, to search for classes of compounds that are suitable candidates for the development of novel therapeutics, and bring it to industry standards. RPE cells used in this platform are derived from human stem cells by a patented and very efficient protocol, which made the platform development possible”, explains the research team consisting of Dr. Seba Almedawar (project leader), Dr. Sven Schreiter and Dr. Dominic Eberle, supported by Prof. Elly Tanaka, Prof. Marius Ader and Dr. Mike Karl. A procedure patented by Prof. Tanaka enables the production of large quantities of human RPE cells at uniformly high quality in the laboratory. This constitutes a major advance for the development of a screening platform for new therapeutic substances.

The awarded research grant is part of the new Hightech-Strategy „Innovationen für Deutschland“ of the German Federal Government. The rapid transfer of innovative ideas for products and services aims to strengthen Germany’s leading position as the largest national economy and exporter in Europe.

The Grant Office, CMCB (a service unit that supports CRTD, BIOTEC and B CUBE in the acquisition of third-party funds) and the Technology Transfer Office have both closely coordinated the CLEANSIGHT grant application and continue to offer their support to the project team.

Further information on CLEANSIGHT (Dresdner Transferbrief, Issue 2.16)
http://www.qucosa.de/fileadmin/data/qucosa/documents/20367/transferbrief_ausgabe... (pages 10-11)

Press Contact
Franziska Clauß
Press Officer
Phone: +49 351 458 82065, e-Mail: franziska.clauss@crt-dresden.de

Founded in 2006, the DFG Research Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at the TU Dresden has passed the second phase of the Excellence Initiative which aims at promoting top-level research and improving the quality of German universities and research institutions. The goal of the CRTD is to explore the body's self-healing potential and to develop completely new, regenerative therapies for hitherto incurable diseases. The key areas of research include haematology and immunology, diabetes, neurodegenerative diseases and bone regeneration. At the moment, eight professors and ten group leaders are working at the CRTD – integrated into an interdisciplinary network of 87 members at seven different institutions within Dresden. In addition, 21 partners from industry are supporting the network. The synergies in the network allow for a fast translation of results from basic research to clinical applications.

www.crt-dresden.de

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>